Recent Advances in Transition-Metal-Catalyzed C–H Addition to Nitriles

Synthesis ◽  
2021 ◽  
Author(s):  
Wei-Wei Liao ◽  
Shu-Qiang Cui

AbstractTransition-metal-catalyzed C–H bond addition to nitriles has emerged as a powerful synthetic approach for the construction of C–C bonds in organic synthesis. Due to the merits of atom- and step-economy, as well the easy availability of the starting materials, these transformations not only deliver acyclic aryl ketone products with nitriles­ as C-building blocks, but can also be utilized for the highly efficient­ assembly of azaheterocyclic skeletons using nitriles as C–N building blocks. This short review summarizes recent progress on transition-metal-catalyzed C–C bond-forming reactions based on C(sp2)–H and C(sp3)–H additions to nitriles.1 Introduction2 Palladium-Catalyzed C–H Addition to Nitriles2.1 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Ketone (Imine) Products2.2 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Azaheterocycles2.3 Palladium-Catalyzed C–H Addition to Nitriles/1,2-Rearangement3 Other Transition-Metal-Catalyzed C–H Additions to Nitriles4 Summary and Outlook

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 391 ◽  
Author(s):  
Ke Cao ◽  
Cai-Yan Zhang ◽  
Tao-Tao Xu ◽  
Ji Wu ◽  
Xin-Yu Wen ◽  
...  

Aromatic heterocycles are ubiquitous building blocks in bioactive natural products, pharmaceutical and agrochemical industries. Accordingly, the carborane-fused heterocycles would be potential candidates in drug discovery, nanomaterials, metallacarboranes, as well as photoluminescent materials. In recent years, the transition metal catalyzed B-H activation has been proved to be an effective protocol for selective functionalization of B-H bond of o-carboranes, which has been further extended for the synthesis of polyhedral borane cluster-fused heterocycles via cascade B-H functionalization/annulation process. This article summarizes the recent progress in construction of polyhedral borane cluster-fused heterocycles via B-H activation.


2020 ◽  
Vol 18 (3) ◽  
pp. 391-399 ◽  
Author(s):  
Hongru Zhang ◽  
Xin Su ◽  
Kaiwu Dong

Hydrocyanation is a powerful method for the preparation of nitriles which are versatile building blocks for the synthesis of amines, acids and amides.


Synthesis ◽  
2019 ◽  
Vol 51 (10) ◽  
pp. 2100-2106 ◽  
Author(s):  
Jie Li ◽  
Paul Knochel

Transition-metal-catalyzed cross-couplings have been recognized as a powerful tool for sustainable syntheses. Despite the fact that remarkable progress was achieved by palladium and nickel catalysis, the high price and toxicity still remained a drawback. Recently, naturally more abundant and less toxic low-valent chromium salts, such as Cr(II) and Cr(III) chlorides, displayed notable unique catalytic reactivity. Thus, recent progress in the field of chromium-catalyzed cross-couplings and related reactions are highlighted in the present short review until December­ 2018.1 Introduction and Early Chromium-Mediated Reactions2 Chromium-Catalyzed Cross-Couplings and Related Reactions3 Conclusion


2014 ◽  
Vol 10 ◽  
pp. 2186-2199 ◽  
Author(s):  
Michael Ghobrial ◽  
Marko D Mihovilovic ◽  
Michael Schnürch

The synthesis of 1,2,3-trisubstituted indoles was investigated. More specifically, straightforward synthetic routes towards 1-(1,2-diarylindol-3-yl)-N-PG-THIQs (PG = protecting group, THIQ = tetrahydroisoquinoline) employing transition metal-catalyzed C–H and N–H-bond functionalization were explored. It was found that the synthesis of the target compounds is strongly dependent on the order of events. Hence, depending on the requirements of a synthetic problem the most suitable and promising pathway can be chosen. Additionally, a new synthetic approach towards 1,2-diarylindoles starting from 1-arylindole could be established in the course of our investigation by using a palladium-catalyzed protocol. Such 1,2-diarylindoles were successfully reacted with N-Boc-THIQ to furnish 1,2,3-trisubstituted indoles as target compounds. Furthermore, regioselective N-arylation of protected and unprotected 1-(indol-3-yl)-THIQs was successfully conducted using either simple iron or copper salts as catalysts.


Synthesis ◽  
2020 ◽  
Vol 52 (06) ◽  
pp. 807-818 ◽  
Author(s):  
So Won Youn

This short review describes the recent progress made on transition-metal-catalyzed annulative couplings for the synthesis of 3-methyleneisoindolin-1-ones, which are useful intermediates for the synthesis of numerous alkaloids and can be often found in a wide range of natural products and pharmaceuticals. In particular, new one-pot multiple C–C/C–N bond-forming processes for the construction of the 5-methylenepyrrol-2-one nucleus of such compounds are summarized.1 Introduction2 Intramolecular Cyclization Reactions: C3–N or C3–C3a and C–C Bond Formation3 Intermolecular Annulative Coupling Reactions3.1 C3–C3a and C3–N Bond Formation3.2 C1–C7a and C3–N Bond Formation3.3 C1–C7a and C1–N Bond Formation3.4 C1–C7a, C1–N and C3–N Bond Formation3.5 C3–C3a, C1–C7a, C1–N and C3–N Bond Formation: A Pd-Catalyzed One-Pot Sonogashira Coupling–Carbonylation–Amination–Cyclization Cascade4 Conclusion


Synthesis ◽  
2021 ◽  
Author(s):  
Zhi Tang ◽  
Zhou Tong ◽  
Shuang-Feng Yin ◽  
Nobuaki Kambe ◽  
Renhua Qiu

Benzofuranone is a sort of important skeleton in many fields, such as natural products, pharmaceuticals, building blocks, antioxidants and dyes. Their efficient synthesis and transformations have attracted great attentions in organic synthesis. They can be synthesized by Friedel−Crafts reaction, intramolecular dehydration ring-closing reaction and transition-metal-catalyzed reaction, etc. And their direct utilization to prepare other functional molecules enhances their further application. Due to their low pKa value and easy enolization ability, the transformation of benzofuranones via C(3)-H bond functionalization is a hot issue in the last ten years. Herein, we highlight the advances on the synthesis of benzofuranones and its transformation via C-H functionalization. Some of other transformations related to benzofuranones are also referred in this review.


Synthesis ◽  
2018 ◽  
Vol 50 (16) ◽  
pp. 3087-3113 ◽  
Author(s):  
Benoit Daoust ◽  
Nicolas Gilbert ◽  
Paméla Casault ◽  
François Ladouceur ◽  
Simon Ricard

1,2-Dihaloalkenes readily undergo simultaneous or sequential difunctionalization through transition-metal-catalyzed reactions, which makes them attractive building blocks for complex unsaturated motifs. This review summarizes recent applications of such transformations in C–C and C–heteroatom bond forming processes. The facile synthesis of stereodefined alkene derivatives, as well as aromatic and heteroatomic­ compounds, from 1,2-dihaloalkenes is thus outlined.1 Introduction2 Synthesis of 1,2-Dihaloalkenes3 C–C Bond Forming Reactions4 C–Heteroatom Bond Forming Reactions5 Conclusion


Synthesis ◽  
2022 ◽  
Author(s):  
Chuan He ◽  
Wei Yuan

In recent years, transition-metal-catalyzed enantioselective C–H bond functionalization has emerged as a powerful and attractive synthetic approach to access silicon-stereogenic centers, which continues to give impetus for the innovation of chiral organosilicon chemistry. This short review is aimed to summarize recent advances in the construction of silicon-stereogenic silanes via transition-metal-catalyzed enantioselective C–H functionalization. We have endeavored to highlight the great potential of this methodology and hope that this review will shed light on new perspectives, inspire further research in this emerging area.


2016 ◽  
Vol 14 (24) ◽  
pp. 5377-5389 ◽  
Author(s):  
Adriana S. Grossmann ◽  
Thomas Magauer

Trihaloethenes are versatile C2-building blocks that can be simply modified via addition, elimination and transition metal-catalyzed reactions.


2016 ◽  
Vol 14 (5) ◽  
pp. 1519-1530 ◽  
Author(s):  
Huawen Huang ◽  
Jinhui Cai ◽  
Guo-Jun Deng

This review is dedicated to showcase and discuss recent progress on N-heterocycle formation by transition-metal catalyzed annulation from O-acyl oximes.


Sign in / Sign up

Export Citation Format

Share Document