scholarly journals On the water structure at hydrophobic interfaces and the roles of water on transition-metal catalyzed reactions: A short review

2017 ◽  
Vol 285 ◽  
pp. 57-64 ◽  
Author(s):  
Xiaohong Zhang ◽  
Torrie E. Sewell ◽  
Brittany Glatz ◽  
Sapna Sarupria ◽  
Rachel B. Getman
Synthesis ◽  
2017 ◽  
Vol 49 (20) ◽  
pp. 4586-4598 ◽  
Author(s):  
Martyn Henry ◽  
Mohamed Mostafa ◽  
Andrew Sutherland

Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.1 Introduction2 Intramolecular C–N Cross-Dehydrogenative Coupling2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation3 Intermolecular C–N Cross-Dehydrogenative Coupling3.1 ortho-C–N Bond Formation3.1.1 Copper-Catalyzed Reactions3.1.2 Other Transition-Metal-Catalyzed Reactions3.2 meta- and para-C–N Bond Formation4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds5 Conclusions


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2021 ◽  
Vol 17 ◽  
Author(s):  
Austin Pounder ◽  
Angel Ho ◽  
Matthew Macleod ◽  
William Tam

: Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.


Synthesis ◽  
2021 ◽  
Author(s):  
Xinjun Luan ◽  
Jingxun Yu

AbstractTransition-metal-catalyzed C–N bond formation is one of the most important pathways to synthesize N-heterocycles. Hydroxylamines can be transformed into a nucleophilic reagent to react with a carbon cation or coordinate with a transition metal; it can also become an electrophilic nitrogen source to react with arenes, alkenes, and alkynes. In this short review, the progress made on transition-metal-catalyzed cycloadditions with hydroxylamines as a nitrogen source is summarized.1 Introduction2 Cycloaddition To Form Aziridine Derivatives2.1 Intramolecular Cycloaddition To Form Aziridine Derivatives2.2 Intermolecular Cycloaddition To Form Aziridine Derivatives3 Cycloaddition To Form Indole Derivatives4 Cycloaddition To Form Other N-Heterocycles4.1 Aza-Heck-Type Amination Reactions4.2 Nitrene Insertion Amination Reactions4.3 Intramolecular Nucleophilic and Electrophilic Amination Reactions5 Conclusion and Outlook


2021 ◽  
pp. 153104
Author(s):  
Francisco Foubelo ◽  
Carmen Nájera ◽  
José M. Sansano ◽  
Miguel Yus

2004 ◽  
pp. 3409 ◽  
Author(s):  
Peter M. Maitlis ◽  
Anthony Haynes ◽  
Brian R. James ◽  
Marta Catellani ◽  
Gian Paolo Chiusoli

Synthesis ◽  
2017 ◽  
Vol 50 (01) ◽  
pp. 1-16 ◽  
Author(s):  
Santosh Mhaske ◽  
Ranjeet Dhokale

The plethora of transformations attainable by the transition-metal-catalyzed reactions of arynes has found immense contemporary interest in the scientific community. This review highlights the scope and importance of transition-metal-catalyzed aryne reactions in the field of synthetic organic chemistry reported to date. It covers transformations achieved by the combination of arynes and various transition metals, which provide a facile access to a biaryl motif, fused polycyclic aromatic compounds, different novel carbocycles, various heterocycles, and complex natural products.1 Introduction2 Insertion of Arynes3 Annulation of Arynes4 Cycloaddition of Arynes5 Multicomponent Reactions of Arynes6 Miscellaneous Reactions of Arynes7 Total Synthesis of Natural Products Using Arynes8 Conclusion


Sign in / Sign up

Export Citation Format

Share Document