Impact of Design of Experiments in the optimisation of catalytic reactions in academia

Synthesis ◽  
2022 ◽  
Author(s):  
Valeria Nori ◽  
Arianna Sinibaldi ◽  
Fabio Pesciaioli ◽  
Armando Carlone

Abstract Design of Experiments (DoE) is extensively and routinely used in industry; however, in the last decades, it has been gaining increasing interest in organic synthesis in academia. The use of Chemometrics is an attractive strategy to find the real optimum in chemical reactions, especially when affected by several variables. DoE has been applied in a growing number of synthetic transformations over the years, where it can undoubtedly help in the process optimisation, saving costs and time. This review concisely discusses the chemometric basis of Design of Experiments and highlights several examples in which DoE has been applied in organic synthesis. Table of contents 1 Introduction 2 Chemometric basis of DoE 3 DoE applied in catalysis: examples 4 Conclusions

2018 ◽  
Vol 14 ◽  
pp. 2553-2567 ◽  
Author(s):  
Keishiro Tahara ◽  
Ling Pan ◽  
Toshikazu Ono ◽  
Yoshio Hisaeda

Cobalamins (B12) play various important roles in vivo. Most B12-dependent enzymes are divided into three main subfamilies: adenosylcobalamin-dependent isomerases, methylcobalamin-dependent methyltransferases, and dehalogenases. Mimicking these B12 enzyme functions under non-enzymatic conditions offers good understanding of their elaborate reaction mechanisms. Furthermore, bio-inspiration offers a new approach to catalytic design for green and eco-friendly molecular transformations. As part of a study based on vitamin B12 derivatives including heptamethyl cobyrinate perchlorate, we describe biomimetic and bioinspired catalytic reactions with B12 enzyme functions. The reactions are classified according to the corresponding three B12 enzyme subfamilies, with a focus on our recent development on electrochemical and photochemical catalytic systems. Other important reactions are also described, with a focus on radical-involved reactions in terms of organic synthesis.


2004 ◽  
Vol 08 (09) ◽  
pp. 1166-1171 ◽  
Author(s):  
Gérard Simonneaux ◽  
Pietro Tagliatesta

Novel chiral systems for the catalytic asymmetric oxidation and cyclopropanation of olefins based on metalloporphyrins containing iron, ruthenium and manganese, have been recently introduced. High catalyst turnover numbers and sometimes high enantiomeric excess were observed. New catalytic reactions with metalloporphyrins have recently been reported; these are the olefination of aldehydes and cyclotrimerization of terminal alkynes. Dendrimers and polymers containing metalloporphyrins, have also been found to be efficient catalysts for oxidation and carbene transfer.


2021 ◽  
Author(s):  
Anjali Jha

In the Conventional laboratory or industry heating technique involve Bunsen burner, heating mental/hot plates and electric heating ovens. To produce a variety of useful compounds for betterment of mankind, the Microwave Chemistry was introduced in year 1955 and finds a place in one of the Green chemistry method. In Microwave chemistry is the science of applying microwave radiation to chemical reactions. Microwaves act as high frequency electric fields and will generally heat any material containing mobile electric charges, such as polar molecules in a solvent or conducting ions in a solid. Polar solvents are heated as their component molecules are forced to rotate with the field and lose energy in collisions i.e. the dipole moments of molecules are important in order to proceed with the chemical reactions in this method. It can be termed as microwave-assisted organic synthesis (MAOS), Microwave-Enhanced Chemistry (MEC) or Microwave-organic Reaction Enhancement synthesis (MORE). Microwave-Assisted Syntheses is a promising area of modern Green Chemistry could be adopted to save the earth.


2002 ◽  
Vol 74 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Shun-Ichi Murahashi ◽  
Hikaru Takaya ◽  
Takeshi Naota

Ruthenium, rhodium, iridium, and rhenium hydride complexes are highly useful redox Lewis acid and base catalysts. Various substrates bearing hetero atoms are activated by these catalysts and undergo reactions with either nucleophiles or electrophiles under neutral conditions. These types of catalytic reactions are described together with their application to the preparation of various biologically active compounds.


2016 ◽  
Vol 55 (35) ◽  
pp. 10478-10482 ◽  
Author(s):  
Ryan M. Bain ◽  
Christopher J. Pulliam ◽  
Fabien Thery ◽  
R. Graham Cooks

ACS Catalysis ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 6911-6917 ◽  
Author(s):  
Robin Theron ◽  
Yang Wu ◽  
Lars P. E. Yunker ◽  
Amelia V. Hesketh ◽  
Indrek Pernik ◽  
...  

2011 ◽  
Vol 233-235 ◽  
pp. 499-506 ◽  
Author(s):  
Yu Kun Shi ◽  
Guang Fei Qu ◽  
Ping Ning ◽  
Jun Zhang ◽  
Hui Feng

Advances of application of ionic liquids as solvents and catalysts in the catalytic oxidation reaction are summarized in this paper. Ionic liquids, as solvent, can provide an environment which is different from the traditional organic solvents for the chemical reactions, and make the catalytic activity and stability better, conversion and selectivity higher; Ionic liquids, as catalyst, not only play the function of promoting reaction, but also play a solvent/catalyst dual functions more directly. Currently ionic liquids in catalytic oxidation reaction are mostly used as solvent, Especially used widely in organic synthesis. The designability of ionic liquids provides a broad space for ionic liquids as catalyst.


1983 ◽  
Vol 48 (4) ◽  
pp. 965-969 ◽  
Author(s):  
Dag Normann

One of the objectives of mathematics is to construct suitable models for practical or theoretical phenomena and to explore the mathematical richness of such models. This enables other scientists to obtain a better understanding of such phenomena. As an example we will mention the real line and related structures. The line can be used profitably in the study of discrete phenomena like population growth, chemical reactions, etc.Today's version of the real line is a topological completion of the rational numbers. This is so because then mathematicians have been able to work out a powerful analysis of the line. By using the real line to construct models for finitary phenomena we are more able to study those phenomena than we would have been sticking only to true-to-nature but finite structures.So we may say that the line is a mathematical model for certain finite structures. This motivates us to seek natural models for other types of finite structures, and it is natural to look for models that in some sense are complete.In this paper our starting point will be finite systems of finite operators. For the sake of simplicity we assume that they all are operators of one variable and that all the values are natural numbers. There is a natural extension of the systems such that they accept several variables and give finite operators as values, but the notational complexity will then obscure the idea of the construction.


Sign in / Sign up

Export Citation Format

Share Document