14 Immune system and lymphatic organs (organa lymphopoetica)

2012 ◽  
Vol 57 (3) ◽  
pp. 1218-1230 ◽  
Author(s):  
Jason Baik ◽  
Kathleen A. Stringer ◽  
Gerta Mane ◽  
Gus R. Rosania

ABSTRACTChronic exposure to some well-absorbed but slowly eliminated xenobiotics can lead to their bioaccumulation in living organisms. Here, we studied the bioaccumulation and distribution of clofazimine, a riminophenazine antibiotic used to treat mycobacterial infection. Using mice as a model organism, we performed a multiscale, quantitative analysis to reveal the sites of clofazimine bioaccumulation during chronic, long-term exposure. Remarkably, between 3 and 8 weeks of dietary administration, clofazimine massively redistributed from adipose tissue to liver and spleen. During this time, clofazimine concentration in fat and serum significantly decreased, while the mass of clofazimine in spleen and liver increased by >10-fold. These changes were paralleled by the accumulation of clofazimine in the resident macrophages of the lymphatic organs, with as much as 90% of the clofazimine mass in spleen sequestered in intracellular crystal-like drug inclusions (CLDIs). The amount of clofazimine associated with CLDIs of liver and spleen macrophages disproportionately increased and ultimately accounted for a major fraction of the total clofazimine in the host. After treatment was discontinued, clofazimine was retained in spleen while its concentrations decreased in blood and other organs. Immunologically, clofazimine bioaccumulation induced a local, monocyte-specific upregulation of various chemokines and receptors. However, interleukin-1 receptor antagonist was also upregulated, and the acute-phase response pathways and oxidant capacity decreased or remained unchanged, marking a concomitant activation of an anti-inflammatory response. These experiments indicate an inducible, immune system-dependent, xenobiotic sequestration response affecting the atypical pharmacokinetics of a small molecule chemotherapeutic agent.


2021 ◽  
Vol 6 (1) ◽  
pp. 30-31
Author(s):  
PD Gupta

A new virus SARS-CoV2 is responsible for Covid-19. Many existing drugs were tried but failed to treat Covid-19 patients. To begin with our immune system also couldn’t cope with Covid-19, therefore within no time it became pandemic. It is a well-known fact that our body fights against all infections and inflammations through well-organized immune system. The human immune system is made up of individual cells (T and B cells) and proteins as well as entire organs and organ systems. The organs of the immune system include skin and mucous membranes, and the organs of the lymphatic system. The skin and mucous membranes are the first line of defense against germs entering from outside the body and once the infection enter in the organs and tissues lymphatic organs take over. Additionally, here we also described gut bacteria and food to build up immunity. In this way human beings are fight against the new virus SARS-CoV2 infections.


2015 ◽  
Vol 72 (15) ◽  
pp. 2899-2910 ◽  
Author(s):  
Aaron M. Glass ◽  
Elizabeth G. Snyder ◽  
Steven M. Taffet

2017 ◽  
pp. 379-409
Author(s):  
Anders Rehfeld ◽  
Malin Nylander ◽  
Kirstine Karnov

2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Sign in / Sign up

Export Citation Format

Share Document