Effect of Epinephrine and Insulin on Adenosine 3'5'-Cyclic Monophosphate - Dependent Protein Kinase in Human Skeletal Muscle In Vivo

1978 ◽  
Vol 10 (03) ◽  
pp. 208-213 ◽  
Author(s):  
A. Roch-Norlund ◽  
R. Horn ◽  
K. Gautvik ◽  
E. Walaas ◽  
O. Walaas
1998 ◽  
Vol 331 (1) ◽  
pp. 299-308 ◽  
Author(s):  
Kay S. WALKER ◽  
Maria DEAK ◽  
Andrew PATERSON ◽  
Kevin HUDSON ◽  
Philip COHEN ◽  
...  

The regulatory and catalytic properties of the three mammalian isoforms of protein kinase B (PKB) have been compared. All three isoforms (PKBα, PKBβ and PKBγ) were phosphorylated at similar rates and activated to similar extents by 3-phosphoinositide-dependent protein kinase-1 (PDK1). Phosphorylation and activation of each enzyme required the presence of PtdIns(3,4,5)P3 or PtdIns(3,4)P2, as well as PDK1. The activation of PKBβ and PKBγ by PDK1 was accompanied by the phosphorylation of the residues equivalent to Thr308 in PKBα, namely Thr309 (PKBβ) and Thr305 (PKBγ). PKBγ which had been activated by PDK1 possessed a substrate specificity identical with that of PKBα and PKBβ towards a range of peptides. The activation of PKBγ and its phosphorylation at Thr305 was triggered by insulin-like growth factor-1 in 293 cells. Stimulation of rat adipocytes or rat hepatocytes with insulin induced the activation of PKBα and PKBβ with similar kinetics. After stimulation of adipocytes, the activity of PKBβ was twice that of PKBα, but in hepatocytes PKBα activity was four-fold higher than PKBβ. Insulin induced the activation of PKBα in rat skeletal muscle in vivo, with little activation of PKBβ. Insulin did not induce PKBγ activity in adipocytes, hepatocytes or skeletal muscle, but PKBγ was the major isoform activated by insulin in rat L6 myotubes (a skeletal-muscle cell line).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


Sign in / Sign up

Export Citation Format

Share Document