Interleukin–6 plays a central role in the hepatic erythropoietin expression during acute phase response: Analysis of two murine models

2010 ◽  
Vol 48 (01) ◽  
Author(s):  
P Ramadori ◽  
G Ahmad ◽  
G Ramadori
2005 ◽  
Vol 102 (19) ◽  
pp. 6843-6848 ◽  
Author(s):  
J. P. Liuzzi ◽  
L. A. Lichten ◽  
S. Rivera ◽  
R. K. Blanchard ◽  
T. B. Aydemir ◽  
...  

1993 ◽  
Vol 13 (1) ◽  
pp. 276-288
Author(s):  
U M Wegenka ◽  
J Buschmann ◽  
C Lütticken ◽  
P C Heinrich ◽  
F Horn

Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes.


1996 ◽  
Vol 28 (2) ◽  
pp. 96-103 ◽  
Author(s):  
F. Kimura ◽  
M. Miyazaki ◽  
T. Suwa ◽  
S. Kakizaki ◽  
H. Itoh ◽  
...  

1993 ◽  
Vol 13 (1) ◽  
pp. 276-288 ◽  
Author(s):  
U M Wegenka ◽  
J Buschmann ◽  
C Lütticken ◽  
P C Heinrich ◽  
F Horn

Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes.


1997 ◽  
Vol 17 (8) ◽  
pp. 4677-4686 ◽  
Author(s):  
J Sasse ◽  
U Hemmann ◽  
C Schwartz ◽  
U Schniertshauer ◽  
B Heesel ◽  
...  

Signal transducer and transcription (STAT) factors are activated by tyrosine phosphorylation in response to a variety of cytokines, growth factors, and hormones. Tyrosine phosphorylation triggers dimerization and nuclear translocation of these transcription factors. In this study, the functional role of carboxy-terminal portions of the STAT family member acute-phase response factor/Stat3 in activation, dimerization, and transactivating potential was analyzed. We demonstrate that truncation of 55 carboxy-terminal amino acids causes constitutive activation of Stat3 in COS-7 cells, as is known for the Stat3 isoform Stat3beta. By the use of deletion and point mutants, it is shown that both carboxy- and amino-terminal portions of Stat3 are involved in this phenomenon. Dimerization of Stat3 was blocked by point mutations affecting residues both in the vicinity of the tyrosine phosphorylation site (Y705) and more distant from this site, suggesting that multiple interactions are involved in dimer formation. Furthermore, by reporter gene assays we demonstrate that carboxy-terminally truncated Stat3 proteins are incapable of transactivating an interleukin-6-responsive promoter in COS-7 cells. In HepG2 hepatoma cells, however, these truncated Stat3 forms transmit signals from the interleukin-6 signal transducer gp130 equally well as does full-length Stat3. We conclude that, dependent on the cell type, different mechanisms allow Stat3 to regulate target gene transcription either with or without involvement of its putative carboxy-terminal transactivation domain.


Sign in / Sign up

Export Citation Format

Share Document