Increased Fibrinogen Synthesis in Mice During the Acute Phase Response: Co-Operative Interaction of Interleukin 1, Interleukin 6, and Interleukin 1 Receptor Antagonist

1993 ◽  
Author(s):  
Hanna Rokita ◽  
Ruta Neta ◽  
Jean D. Sipe
2006 ◽  
Vol 282 (7) ◽  
pp. 4393-4399 ◽  
Author(s):  
Nicolas Venteclef ◽  
Philippe Delerive

The liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor believed to play a key role in bile acid metabolism, cholesterol homeostasis, and intestinal cell crypt renewal. LRH-1 has recently been reported to negatively regulate the hepatic acute phase response by antagonizing, at least in part, the CCAAT/enhancer-binding protein signaling pathway. Here we have shown, using adenovirus-mediated LRH-1 overexpression and gene-silencing experiments, that the interleukin-1 receptor antagonist (IL-1RA) gene is a novel LRH-1 target gene in hepatic cells. Promoter mapping and chromatin immunoprecipitation experiments revealed that LRH-1 regulates IL-1RA gene expression under inflammatory conditions at the transcriptional level via the binding to an LRH-1 response element. Interestingly, IL-1RA induction by an intraperitoneal injection of lipopolysaccharide is significantly lower in LRH-1 heterozygous compared with wild-type mice, demonstrating the contribution of LRH-1 in IL-1RA gene regulation. Finally, RNA interference experiments indicate that LRH-1 blocks the hepatic acute phase response by, at least in part, inducing IL-1RA expression. Taken together, these results lead to the identification of IL-1RA as a novel LRH-1 target gene and demonstrate the existence of multiple mechanisms contributing to the overall anti-inflammatory properties of LRH-1 in hepatic cells.


2005 ◽  
Vol 102 (19) ◽  
pp. 6843-6848 ◽  
Author(s):  
J. P. Liuzzi ◽  
L. A. Lichten ◽  
S. Rivera ◽  
R. K. Blanchard ◽  
T. B. Aydemir ◽  
...  

1993 ◽  
Vol 13 (1) ◽  
pp. 276-288
Author(s):  
U M Wegenka ◽  
J Buschmann ◽  
C Lütticken ◽  
P C Heinrich ◽  
F Horn

Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes.


Sign in / Sign up

Export Citation Format

Share Document