Beneficial Effects of Capsiate on Ethanol-Induced Mucosal Injury in Rats Are Related to Stimulation of Calcitonin Gene-Related Peptide Release

Planta Medica ◽  
2011 ◽  
Vol 78 (01) ◽  
pp. 24-30 ◽  
Author(s):  
Nian-Sheng Li ◽  
Xiu-Ju Luo ◽  
Zhong Dai ◽  
Bin Liu ◽  
Yi-Shuai Zhang ◽  
...  
2010 ◽  
Vol 88 (10) ◽  
pp. 949-959 ◽  
Author(s):  
Jian-Zhe Li ◽  
Jun Peng ◽  
Li Xiao ◽  
Yi-Shuai Zhang ◽  
Mei-Chun Liao ◽  
...  

Dysfunction of capsaicin-sensitive sensory nerves is involved in cardiac remodeling, and rutaecarpine has been shown to exert a beneficial effect on cardiac function through activating the sensory nerves. This study was conducted to explore the potential inhibitory effect of rutaecarpine on cardiac remodeling and the underlying mechanisms. A rat cardiac remodeling model was established by injection of isoprenaline (5 mg/kg per day, s.c.) for 10 days. Rutaecarpine (10 or 40 mg/kg, i.g.) was coadministrated with isoprenaline to evaluate the effect of rutaecarpine on cardiac remodeling. After echocardiographic analysis was performed, blood samples were collected to quantify calcitonin gene-related peptide (CGRP), dorsal root ganglia were isolated for examining CGRP mRNA expression, and the hearts were weighed and saved for evaluating the parameters related to apoptosis and hypertrophy. Isoprenaline significantly increased the ratio of left ventricle weight to body weight, the cross-sectional area of cardiomyocytes, cardiac apoptosis, and collagen deposition concomitantly with decreased CGRP production, which were reversed by rutaecarpine treatment. The beneficial effects of rutaecarpine were attenuated by pretreatment with capsaicin, which selectively depleted CGRP. These results suggest that rutaecarpine was able to reverse isoprenaline-induced cardiac remodeling through stimulating CGRP production.


2021 ◽  
Vol 122 ◽  
pp. 104916
Author(s):  
Antonio Guzmán ◽  
Gregorio Encina ◽  
Antonio R. Fernández de Henestrosa ◽  
Cristina Vila ◽  
Araceli Tortajada ◽  
...  

1989 ◽  
Vol 256 (2) ◽  
pp. E331-E335 ◽  
Author(s):  
T. Chiba ◽  
A. Yamaguchi ◽  
T. Yamatani ◽  
A. Nakamura ◽  
T. Morishita ◽  
...  

From this study, we predicted that the human calcitonin gene-related peptide (hCGRP) fragment hCGRP-(8-37) would be a selective antagonist for CGRP receptors but an agonist for calcitonin (CT) receptors. In rat liver plasma membrane, where CGRP receptors predominate and CT appears to act through these receptors, hCGRP-(8-37) dose dependently displaced 125I-[Tyr0]rat CGRP binding. However, hCGRP-(8-37) had no effect on adenylate cyclase activity in liver plasma membrane. Furthermore, hCGRP-(8-37) inhibited adenylate cyclase activation induced not only by hCGRP but also by hCT. On the other hand, in LLC-PK1 cells, where calcitonin receptors are abundant and CGRP appears to act via these receptors, the bindings of 125I-[Tyr0]rat CGRP and 125I-hCT were both inhibited by hCGRP-(8-37). In contrast to liver membranes, interaction of hCGRP-(8-37) with these receptors led to stimulation of adenosine 3',5'-cyclic monophosphate (cAMP) production in LLC-PK1 cells, and moreover, this fragment did not inhibit the increased production of cAMP induced not only by hCT but also by hCGRP. Thus hCGRP-(8-37) appears to be a useful tool for determining whether the action of CGRP as well as that of CT is mediated via specific CGRP receptors or CT receptors.


Peptides ◽  
2014 ◽  
Vol 56 ◽  
pp. 8-13 ◽  
Author(s):  
Maria Cristina Greco ◽  
Lucia Lisi ◽  
Diego Currò ◽  
Pierluigi Navarra ◽  
Giuseppe Tringali

Sign in / Sign up

Export Citation Format

Share Document