Establishment and Validation of Total Quantum Statistical Moment Similarity for Radix et Rhizoma Rhei Chromatographic Fingerprints

Planta Medica ◽  
2012 ◽  
Vol 78 (05) ◽  
Author(s):  
H Sheng ◽  
WL Liu ◽  
W Wang ◽  
JL Shi ◽  
KW Deng ◽  
...  
2020 ◽  
Vol 16 (3) ◽  
pp. 303-311
Author(s):  
Qi Huang ◽  
Chunsong Cheng ◽  
Lili Li ◽  
Daiyin Peng ◽  
Cun Zhang

Background: Scutellariae Radix (Huangqin) is commonly processed into 3 products for different clinical applications. However, a simple analytical method for quality control has rarely been reported to quickly estimate the degree of processing Huangqin or distinguish differently processed products or unqualified Huangqin products. Objective: To study a new strategy for quality control in the processing practice of Huangqin. Methods: Seven kinds of flavonoids that mainly exist in Huangqin were determined by HPLC-DAD. Chromatographic fingerprints were established to study the variation and discipline of the 3 processed products of Huangqin. PCA and OPLS-DA were used to classify differently processed products of Huangqin. Results: The results showed that baicalin and wogonoside were the main components in the crude and the alcohol Huangqin herb while baicalein and wogonin mainly existed in carbonized Huangqin. The results of mathematical statistics revealed that the processing techniques can make the quality of medicinal materials more uniform. Conclusion: This multivariate monitoring strategy is suitable for quality control in the processing of Huangqin.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3371
Author(s):  
Chao-Qun Wang ◽  
Li-Wei Yi ◽  
Lin Zhao ◽  
Yu-Zhen Zhou ◽  
Fang Guo ◽  
...  

Wild ginseng (W-GS), ginseng under forest (F-GS, planted in mountain forest and growing in natural environment), and cultivated ginseng (C-GS) were compared via HPLC-DAD and HPLC-IT-TOF-MSn. A total of 199 saponins, including 16 potential new compounds, were tentatively identified from 100 mg W-GS (177 saponins in W-GS with 11 new compounds), F-GS (56 saponins with 1 new compound), and C-GS (60 saponins with 6 new compounds). There were 21 saponins detected from all the W-GS, F-GS, and C-GS. Fifty saponins were only detected from W-GS, including 23 saponins found in ginseng for the first time. Contents of ginsenosides Re (12.36–13.91 mg/g), Rh1 (7.46–7.65 mg/g), Rd (12.94–12.98 mg/g), and the total contents (50.52–55.51 mg/g) of Rg1, Re, Rf, Rb1, Rg2, Rh1, and Rd in W-GS were remarkably higher than those in F-GS (Re 1.22–3.50 mg/g, Rh1 0.15–1.49 mg/g, Rd 0.19–1.49 mg/g, total 5.69–18.74 mg/g), and C-GS (Re 0.30–3.45 mg/g, Rh1 0.05–3.42 mg/g, Rd 0.17–1.68 mg/g, total 2.99–19.55 mg/g). Contents of Re and Rf were significantly higher in F-GS than those in C-GS (p < 0.05). Using the contents of Re, Rf, or Rb1, approximately a half number of cultivated ginseng samples could be identified from ginseng under forest. Contents of Rg1, Re, Rg2, Rh1, as well as the total contents of the seven ginsenosides were highest in ginseng older than 15 years, middle–high in ginseng between 10 to 15 years old, and lowest in ginseng younger than 10 years. Contents of Rg1, Re, Rf, Rb1, Rg2, and the total of seven ginsenosides were significantly related to the growing ages of ginseng (p < 0.10). Similarities of chromatographic fingerprints to W-GS were significantly higher (p < 0.05) for F-GS (median: 0.824) than C-GS (median: 0.745). A characteristic peak pattern in fingerprint was also discovered for distinguishing three types of ginseng. Conclusively, wild ginseng was remarkably superior to ginseng under forest and cultivated ginseng, with ginseng under forest slightly closer to wild ginseng than cultivated ginseng. The differences among wild ginseng, ginseng under forest, and cultivated ginseng in saponin compositions and contents of ginsenosides were mainly attributed to their growing ages.


Sign in / Sign up

Export Citation Format

Share Document