Treatment of airway inflammation and airway hyperresponsiveness in a mouse model of neutrophilic asthma using a RORγt-specific siRNA

Pneumologie ◽  
2015 ◽  
Vol 69 (04) ◽  
Author(s):  
S Webering ◽  
L Lunding ◽  
H Fehrenbach ◽  
M Wegmann
Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3553
Author(s):  
Eszter Csikós ◽  
Kata Csekő ◽  
Amir Reza Ashraf ◽  
Ágnes Kemény ◽  
László Kereskai ◽  
...  

Thyme (TO), cinnamon (CO), and Ceylon type lemongrass (LO) essential oils (EOs) are commonly used for inhalation. However, their effects and mechanisms on inflammatory processes are not well-documented, and the number of in vivo data that would be important to determine their potential benefits or risks is low. Therefore, we analyzed the chemical composition and investigated the activity of TO, CO, and LO on airway functions and inflammatory parameters in an acute pneumonitis mouse model. The components of commercially available EOs were measured by gas chromatography–mass spectrometry. Airway inflammation was induced by intratracheal endotoxin administration in mice. EOs were inhaled during the experiments. Airway function and hyperresponsiveness were determined by unrestrained whole-body plethysmography on conscious animals. Myeloperoxidase (MPO) activity was measured by spectrophotometry from lung tissue homogenates, from which semiquantitative histopathological scores were assessed. The main components of TO, CO, and LO were thymol, cinnamaldehyde, and citronellal, respectively. We provide here the first evidence that TO and CO reduce inflammatory airway hyperresponsiveness and certain cellular inflammatory parameters, so they can potentially be considered as adjuvant treatments in respiratory inflammatory conditions. In contrast, Ceylon type LO inhalation might have an irritant effect (e.g., increased airway hyperresponsiveness and MPO activity) on the inflamed airways, and therefore should be avoided.


2021 ◽  
Author(s):  
Seo-Hee Kim ◽  
Hoang Kim Tu Trinh ◽  
Hae-Sim Park ◽  
Yoo Seob Shin

Abstract Background: It is apparent that the interaction between platelets and eosinophils plays a critical role in the activation of allergic inflammation. We investigated whether blocking of the glycoprotein (GP) IIb/IIIa receptor can attenuate allergic inflammation and airway hyperresponsiveness through inhibition of platelet-eosinophil aggregation (PEA) in asthma.Methods: BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 0 and 14, followed by 3 nebulized OVA challenges on days 28-30. On each challenge day, 5 mg/kg tirofiban was administered intraperitoneally 30 minutes before the challenge. Mice were assessed for airway hyperresponsiveness (AHR), airway inflammation, and the degree of PEA. Finally, the activation levels of platelets and eosinophils were evaluated.Results: Tirofiban treatment decreased AHR and eosinophilic inflammation in BAL fluid. This treatment also reduced the levels of IL-4, IL-5, and IL-13 in BAL fluid and airway inflammatory cell infiltration in histological evaluation. Interestingly, the blocking of the GP IIb/IIIa receptor more reduced PEA in both blood and lung tissue of tirofiban-treated mice than in those of the positive control mice, and both eosinophilic and platelet activations were attenuated in tirofiban-treated mice.Conclusion: The blocking of GP IIb/IIIa receptor with tirofiban can attenuate AHR and airway inflammation through the inhibition of PEA and activation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Seo-Hee Kim ◽  
Hoang Kim Tu Trinh ◽  
Hae-Sim Park ◽  
Yoo Seob Shin

Abstract Background It is apparent that the interaction between platelets and eosinophils plays a critical role in the activation of allergic inflammation. We investigated whether blocking of the glycoprotein (GP) IIb/IIIa receptor can attenuate allergic inflammation and airway hyperresponsiveness through inhibition of platelet–eosinophil aggregation (PEA) in asthma. Methods BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 0 and 14, followed by 3 nebulized OVA challenges on days 28–30. On each challenge day, 5 mg/kg tirofiban was administered intraperitoneally 30 min before the challenge. Mice were assessed for airway hyperresponsiveness (AHR), airway inflammation, and the degree of PEA. Finally, the activation levels of platelets and eosinophils were evaluated. Results Tirofiban treatment decreased AHR and eosinophilic inflammation in Bronchoalveolar Lavage (BAL) fluid. This treatment also reduced the levels of interleukin (IL)-4, IL-5, and IL-13 in BAL fluid and airway inflammatory cell infiltration in histological evaluation. Interestingly, the blocking of the GP IIb/IIIa receptor more reduced PEA in both blood and lung tissue of tirofiban-treated mice than in those of the positive control mice, and both eosinophilic and platelet activations were attenuated in tirofiban-treated mice. Conclusions The blocking of GP IIb/IIIa receptor with tirofiban can attenuate AHR and airway inflammation through the inhibition of PEA and activation.


2012 ◽  
Vol 302 (3) ◽  
pp. L308-L315 ◽  
Author(s):  
Peter J. Oldenburg ◽  
Jill A. Poole ◽  
Joseph H. Sisson

There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.


2008 ◽  
Vol 8 (6) ◽  
pp. 893-899 ◽  
Author(s):  
Arjun Ram ◽  
Ulaganathan Mabalirajan ◽  
Shashi Kant Singh ◽  
Vijay Pal Singh ◽  
Balaram Ghosh

Sign in / Sign up

Export Citation Format

Share Document