scholarly journals Effects of Thymus vulgaris L., Cinnamomum verum J.Presl and Cymbopogon nardus (L.) Rendle Essential Oils in the Endotoxin-induced Acute Airway Inflammation Mouse Model

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3553
Author(s):  
Eszter Csikós ◽  
Kata Csekő ◽  
Amir Reza Ashraf ◽  
Ágnes Kemény ◽  
László Kereskai ◽  
...  

Thyme (TO), cinnamon (CO), and Ceylon type lemongrass (LO) essential oils (EOs) are commonly used for inhalation. However, their effects and mechanisms on inflammatory processes are not well-documented, and the number of in vivo data that would be important to determine their potential benefits or risks is low. Therefore, we analyzed the chemical composition and investigated the activity of TO, CO, and LO on airway functions and inflammatory parameters in an acute pneumonitis mouse model. The components of commercially available EOs were measured by gas chromatography–mass spectrometry. Airway inflammation was induced by intratracheal endotoxin administration in mice. EOs were inhaled during the experiments. Airway function and hyperresponsiveness were determined by unrestrained whole-body plethysmography on conscious animals. Myeloperoxidase (MPO) activity was measured by spectrophotometry from lung tissue homogenates, from which semiquantitative histopathological scores were assessed. The main components of TO, CO, and LO were thymol, cinnamaldehyde, and citronellal, respectively. We provide here the first evidence that TO and CO reduce inflammatory airway hyperresponsiveness and certain cellular inflammatory parameters, so they can potentially be considered as adjuvant treatments in respiratory inflammatory conditions. In contrast, Ceylon type LO inhalation might have an irritant effect (e.g., increased airway hyperresponsiveness and MPO activity) on the inflamed airways, and therefore should be avoided.

2013 ◽  
Vol 76 (4) ◽  
pp. 631-639 ◽  
Author(s):  
JORGE GIOVANNY LOPEZ-REYES ◽  
DAVIDE SPADARO ◽  
AMBRA PRELLE ◽  
ANGELO GARIBALDI ◽  
MARIA LODOVICA GULLINO

The antifungal activity of plant essential oils was evaluated as postharvest treatment on stone fruit against brown rot and grey mold rot of stone fruit caused by Monilinia laxa and Botrytis cinerea, respectively. The essential oils from basil (Ocimum basilicum), fennel (Foeniculum sativum), lavender (Lavandula officinalis), marjoram (Origanum majorana), oregano (Origanum vulgare), peppermint (Mentha piperita), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), savory (Satureja montana), thyme (Thymus vulgaris), and wild mint (Mentha arvensis) were tested at two different concentrations on apricots (cv. Kyoto and cv. Tonda di Costigliole), nectarines (cv. Big Top and cv. Nectaross) and plums (cv. Italia and cv. TC Sun). The volatile composition of the essential oils tested was determined by gas chromatography–mass spectrometry analysis. The treatments containing essential oils from oregano, savory, and thyme at 1% (vol/vol) controlled both B. cinerea and M. laxa growing on apricots cv. Tonda di Costigliole and plums cv. Italia and cv. TC Sun; however, the same treatments were phytotoxic for the carposphere of nectarines cv. Big Top and cv. Nectaross. Treatments with 10% (vol/vol) essential oils were highly phytotoxic, notwithstanding their efficacy against the pathogens tested. The essential oils containing as major components α-pinene, p-cymene, carvacrol, and thymol showed similar results on stone fruit, so their antimicrobial activity and the phytotoxicity produced could be based on the concentration of their principal compounds and their synergistic activity. The efficacy of the essential oil treatments on control of fungal pathogens in postharvest depended on the fruit cultivar, the composition and concentration of the essential oil applied, and the length of storage.


2012 ◽  
Vol 302 (3) ◽  
pp. L308-L315 ◽  
Author(s):  
Peter J. Oldenburg ◽  
Jill A. Poole ◽  
Joseph H. Sisson

There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Seung-Hyung Kim ◽  
Bok-Kyu Kim ◽  
Young-Cheol Lee

Background and Objective. The features of asthma are airway inflammation, reversible airflow obstruction, and an increased sensitivity to bronchoconstricting agents, termed airway hyperresponsiveness (AHR), excess production of Th2 cytokines, and eosinophil accumulation in the lungs. To investigate the antiasthmatic potential of hesperidin as well as the underlying mechanism involved, we studied the inhibitory effect and anti-inflammatory effect of hesperidin (HPN) on the production of Th2 cytokines, eotaxin, IL-17, -OVA-specific IgEin vivoasthma model mice.Methods. In this paper, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of HPN on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA-specific IgE production in a mouse model of asthma.Results. In BALB/c mice, we found that HPN-treated groups had suppressed eosinophil infiltration, allergic airway inflammation, and AHR, and these occurred by suppressing the production of IL-5, IL-17, and OVA-specific IgE.Conclusions. Our data suggest that the therapeutic mechanism by which HPN effectively treats asthma is based on reductions of Th2 cytokines (IL-5), eotaxin, OVA-specific IgE production, and eosinophil infiltration via inhibition of GATA-3 transcription factor.


2008 ◽  
Vol 54 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Renke Maas ◽  
Edzard Schwedhelm ◽  
Lydia Kahl ◽  
Huige Li ◽  
Ralf Benndorf ◽  
...  

Abstract Background: Endothelial function is impaired in hypercholesterolemia and atherosclerosis. Based on mostly indirect evidence, this impairment is attributed to reduced synthesis or impaired biological activity of endothelium-derived nitric oxide (NO). It was the aim of this study to directly estimate and compare whole-body NO production in normo- and hypercholesterolemia by applying a nonradioactive stable isotope dilution technique in vivo. Methods: We enrolled 12 normocholesterolemic and 24 hypercholesterolemic volunteers who were all clinically healthy. To assess whole-body NO synthesis, we intravenously administered l-[guanidino-(15N2)]-arginine and determined the urinary excretion of 15N-labeled nitrate, the specific end product of NO oxidation in humans, by use of gas chromatography-mass spectrometry. In addition, we measured flow-mediated vasodilation (FMD) of the brachial artery, expression of endothelial NOS (eNOS) in platelets, plasma concentration of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), and urinary excretion of 8-isoprostaglandin F2α (8-iso-PGF2α). Results: After infusion of l-[guanidino-(15N2)]-arginine, cumulative excretion of 15N-labeled-nitrate during 48 h was 40% [95% CI 15%–66%] lower in hypercholesterolemic than normocholesterolemic volunteers [mean 9.2 (SE 0.8) μmol vs 15.4 (2.3) μmol/l, P = 0.003]. FMD was on average 36% [4%–67%] lower in hypercholesterolemic than normocholesterolemic volunteers [6.3 (4.0)% vs 9.4 (4.6)%, P = 0.027]. Normalized expression of NOS protein in platelets was also significantly lower in hypercholesterolemic volunteers, whereas there were no significant differences in plasma ADMA concentration or urinary excretion of 8-iso-PGF2α between the 2 groups. Conclusions: This study provides direct evidence for a decreased whole body NO synthesis rate in healthy people with hypercholesterolemia.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2016 ◽  
Vol 79 (2) ◽  
pp. 309-315 ◽  
Author(s):  
FATIMA REYES-JURADO ◽  
AURELIO LÓPEZ-MALO ◽  
ENRIQUE PALOU

ABSTRACTThe antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography–mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.


2018 ◽  
Vol 73 (9-10) ◽  
pp. 353-360 ◽  
Author(s):  
Nursenem Karaca ◽  
Betül Demirci ◽  
Fatih Demirci

Abstract Lavandula stoechas subsp. stoechas and Mentha spicata subsp. spicata are used for the treatment of sinusitis in Turkish folk medicine. The components of essential oils obtained by hydrodistillation were determined by gas chromatography-flame ionization detector (GC-FID), gas chromatography/mass spectrometry (GC/MS), and thin layer chromatography (TLC). Major components of L. stoechas and M. spicata oils were determined as camphor (46.7%) and carvone (60.6%), respectively. The antibacterial activity of essential oils and their main components were tested against the common selected sinusitis pathogens Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, Moraxella catarrhalis, and Pseudomonas aeruginosa using in vitro agar diffusion, microdilution, and vapor diffusion methods. As a result, the tested plant materials, which are locally and natively used against sinusitis, were relatively mild antibacterial (in vitro MICs 310–1250 μg/mL) in action. To use essential oils and their components safely in sinusitis therapy, further detailed in vivo experiments are needed to support their efficacy.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 656
Author(s):  
Gea ◽  
Navarro ◽  
Santos ◽  
Diánez ◽  
Herraiz-Peñalver

The main aim of this study was to evaluate the use of essential oils (EOs) as an alternative to synthetic fungicides used in the control of cobweb disease of button mushroom (Agaricus bisporus) caused by Cladobotryum mycophilum. The EOs used were obtained by hydrodistillation from five Mediterranean aromatic species (Lavandula × intermedia, Salvia lavandulifolia, Satureja montana, Thymus mastichina, and Thymus vulgaris), analyzed by gas chromatography, and tested in vitro for their antifungal activity against C. mycophilum. In vitro bioassays showed that the EOs obtained from T. vulgaris and S. montana (ED50 = 35.5 and 42.8 mg L−1, respectively) were the most effective EOs for inhibiting the mycelial growth of C. mycophilum, and were also the most selective EOs between C. mycophilum and A. bisporus. The in vivo efficacy of T. vulgaris and S. montana EOs at two different concentrations (0.5 and 1%) were evaluated in two mushroom growing trials with C. mycophilum inoculation. The treatments involving T. vulgaris and S. montana EOs at the higher dose (1% concentration) were as effective as fungicide treatment. The effect of these EOs on mushroom productivity was tested in a mushroom cropping trial without inoculation. They had a strong fungitoxic effect at the first flush. However, a compensatory effect was observed by the end of the crop cycle and no differences were observed in biological efficiency between treatments. The main compounds found were carvacrol and p-cymene for S. montana, and p-cymene and thymol for T. vulgaris. These results suggest that T. vulgaris and S. montana EOs may be useful products to manage cobweb disease if used as part of an integrated pest management (IPM) program.


2017 ◽  
Vol 64 (1) ◽  
pp. 7-9
Author(s):  
I. Kazimierová ◽  
L. Pappová ◽  
M. Šútovská ◽  
S. Fraňová

AbstractBackground:Fisetin, a derivate from the flavonol group may possess a variety of pharmacological effects. The aim of the presented study was to evaluate the bronchodilatory effect of fisetin after the acute or the chronic administration to guinea pigs with allergic airway inflammation.Methods:Experimental animals were sensitized and challenged by ovalbumin. Fisetin was administered in dose 5mg/kg/p.o., either once after the end of 21-days sensitization or daily during the 21-days sensitization. By using the whole-body plethysmograph, we monitored the specific airway resistance, a parameter of airway hyperreactivityin vivo. The changes of the specific airway resistance were evaluated after the short-term inhalation of the bronchoconstriction mediator-histamine (10−6mol.1−1).Results:Our results showed that the short-term as well as the long-term administration of fisetin caused decrease of the specific airway resistance values. The bronchodilatory effect of fisetin was comparable to the long-acting beta2sympathomimetic – salmeterol after the long-term administration. The measurements of the bronchodilatory activity after single administration have revealed more prolonged effect of fisetin comparing to the short-acting beta2sympathomimetic – salbutamol, as this remained even after the 5 hours, when salbutamol was already ineffective.Conclusion:In conclusion, flavonol – fisetin has shown bronchodilatory potential. In the light of this fact, fisetin may represent potential substance that can be effective in both prevention as well as control of airway inflammation symptoms.


2006 ◽  
Vol 291 (3) ◽  
pp. L466-L472 ◽  
Author(s):  
Martin Witzenrath ◽  
Birgit Ahrens ◽  
Stefanie M. Kube ◽  
Armin Braun ◽  
Heinz G. Hoymann ◽  
...  

Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause ( Penh). Twenty-four hours after each Penh measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after Penh measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the β2-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.


Sign in / Sign up

Export Citation Format

Share Document