scholarly journals Pd-catalyzed Auto-Tandem Cascades Based on N-Sulfonylhydrazones: Hetero- and Carbocyclization Processes

Synthesis ◽  
2017 ◽  
Vol 28 (19) ◽  
pp. 4434-4447 ◽  
Author(s):  
Carlos Valdés ◽  
Raquel Barroso ◽  
María Cabal

The Pd-catalyzed cross-coupling between N-tosylhydrazones and organic halides is a powerful method for the creation of C–C bonds. This transformation has been included recently in cascade processes in which the same catalyst promotes various independent catalytic steps, a process known as auto-tandem catalysis. This strategy proves to be very useful for the construction of relatively complex carbo- and heterocyclic structures, as well as for the generation of molecular diversity. This short review will cover the different Pd-catalyzed auto-tandem reactions­ involving N-tosylhydrazones organized by the bond-forming sequence: C–C/C–N and C–C/C–C. Some examples of related tandem reactions leading to acyclic compounds are also highlighted.1 Introduction2 Auto-Tandem C–C/C–N Bond-Forming Reactions3 Auto-Tandem C–C/C–C Bond-Forming Reactions4 Tandem Reactions for the Synthesis of Linear Molecules5 Summary and Outlook

Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3215-3223 ◽  
Author(s):  
Yi-Hung Chen ◽  
Mario Ellwart ◽  
Vladimir Malakhov ◽  
Paul Knochel

Organozinc species are powerful reagents for performing carbon–carbon and carbon–heteroatom bond-forming reactions in the presence of a transition-metal catalyst. However, extended applications of zinc reagents have been hampered by their moderate air- and moisture­-stability. This short review presents our recent developments on the preparation of solid aryl, benzyl, heteroaryl, allyl zinc pivalates and zinc amide enolate reagents with greatly enhanced stability toward to air and moisture.1 Introduction2 Preparation of Organozinc Pivalates2.1 Using Organic Halides as Substrates2.2 Using a Directed Metalation on Functionalized Arenes and Heteroarenes2.3 Preparation of Solid Allylic Zinc Pivalates3 General Reactivity Patterns of Organozinc Pivalates3.1 General Aspects3.2 Transition-Metal-Catalyzed Cross-Couplings3.3 Other Carbon–Carbon Bond-Forming Reactions Using Organozinc Pivalates3.4 Preparation and Reactions of Solid, Salt-Stabilized Zinc Amide Enolates as New, Convenient Reformatsky Reagents4 Conclusion


Synthesis ◽  
2018 ◽  
Vol 51 (01) ◽  
pp. 135-145 ◽  
Author(s):  
Naohiko Yoshikai

This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.1 Introduction2 Hydrovinylation3 C–H Functionalization4 Cycloaddition and Cyclization5 Addition of Carbon Nucleophiles6 Cross-Coupling7 Conclusion


Synthesis ◽  
2020 ◽  
Author(s):  
Joseph J. Badillo ◽  
Jason Saway ◽  
Zena M. Salem

AbstractPhotoacids are molecules that become more acidic upon the absorption of light. This short review highlights recent advances in the use of photoacids as catalysts for organic synthesis. Photoacid-catalyzed­ transformations discussed herein include: Protonation, glycosylation, acetalization, and arylation reactions.1 Introduction2 Protonation: Excited-State Proton Transfer (ESPT)3 Glycosylation4 Acetalization5 Friedel–Crafts Arylation6 Additional C–C and C–S Bond-Forming Reactions7 Conclusion


Synthesis ◽  
2018 ◽  
Vol 51 (01) ◽  
pp. 83-96 ◽  
Author(s):  
Heng Zhang ◽  
Aiwen Lei

The construction of nitrogen-containing molecules remains at the cutting edge of organic synthesis because of its wide application in various areas. Instead of prefunctionalized substrates, using free C–H and N–H bonds in the starting materials can supply a more sustainable avenue to the C–N bond-forming reactions. Compared with the well-developed transition-metal-catalyzed protocols, the strategy of introducing optical or electrical energy into reactions is fantastic and appealing. As a result, visible light or electricity mediated amination transformations have continued to develop over the past several years. In this short review, recent progress of carbon–nitrogen bond-forming reactions based on the oxidative cross coupling between C(sp2, sp3)–H and N–H are summarized.1 Introduction2 C(sp2)–H/N–H Oxidative Cross Coupling2.1 Aryl C(sp2)–H as C Nucleophiles2.1.1 Azoles as N Nucleophiles2.1.2 Sulfonamides or Sulfonimides as N Nucleophiles2.1.3 NH3 as N Nucleophile2.1.4 Morpholine as N Nucleophile2.1.5 Diaryl Amines as N Nucleophiles2.1.6 Primary Amines as N Nucleophiles2.1.7 Imides as N Nucleophiles2.1.8 Imines as N Nucleophiles2.2 Alkenyl C(sp2)–H as C Nucleophiles2.3 Aldehydic C(sp2)–H as C Nucleophiles3 C(sp3)–H/N–H Oxidative Cross Coupling3.1 Benzylic C(sp3)–H as C Nucleophiles3.2 α-C(sp3)–H as C Nucleophiles4 Conclusions and Outlook


2020 ◽  
Vol 23 (28) ◽  
pp. 3206-3225 ◽  
Author(s):  
Amol D. Sonawane ◽  
Mamoru Koketsu

: Over the last decades, many methods have been reported for the synthesis of selenium- heterocyclic scaffolds because of their interesting reactivities and applications in the medicinal as well as in the material chemistry. This review describes the recent numerous useful methodologies on C-Se bond formation reactions which were basically carried out at low and room temperature.


2019 ◽  
Vol 23 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Xiangjun Peng ◽  
Xianyun Xu ◽  
Fujiang Huang ◽  
Qian Liu ◽  
Liangxian Liu

Since Geim and co-workers reported their groundbreaking experiments on graphene, research on graphene oxide (GO) and its derivatives has greatly influenced the field of modern physics, chemistry, device fabrication, material science, and nanotechnology. The unique structure and fascinating properties of these carbon materials can be ascribed to their eminent chemical, electronic, electrochemical, optical, and mechanical properties of GO and its derivatives, particularly compared to other carbon allotropes. The present Review aims to provide an overview on the recent developments in the preparation of GO and its derivatives and their applications in organic reactions. We will first outline the synthesis of GO and its derivatives. Then, we will discuss the major sections about their application as stoichiometric and catalytic oxidants in organic reactions, a particular emphasis on the carbon-carbon, carbon-oxygen, and carbon-nitrogen single bond-forming reactions, as well as carbon-oxygen and carbon-nitrogen double bond-forming reactions. Simultaneously, this Review also describes briefly transition metal supported on GO or its derivatives as a catalyst for organic reaction. Lastly, we will present an outlook of potential areas where GO and its derivatives may be expected to find utility or opportunity for further growth and study.


Synlett ◽  
2020 ◽  
Author(s):  
Debendra K. Mohapatra ◽  
Shivalal Banoth ◽  
Utkal Mani Choudhury ◽  
Kanakaraju Marumudi ◽  
Ajit C. Kunwar

AbstractA concise and convergent stereoselective synthesis of curvulone B is described. The synthesis utilized a tandem isomerization followed by C–O and C–C bond-forming reactions following Mukaiyama-type aldol conditions for the construction of the trans-2,6-disubstituted dihydropyran ring system as the key steps. Other important features of this synthesis are a cross-metathesis, epimerization, and Friedel–Crafts acylation.


2021 ◽  
Author(s):  
Katarina Stefkova ◽  
Matthew Heard ◽  
Ayan Dasgupta ◽  
Rebecca Melen

Triarylboranes have gained substantial attention as catalysts for C–C bond forming reactions due to their remarkable catalytic activities. Herein, we report B(C6F5)3 catalysed cyclopropenation of a wide variety of arylacetylenes...


Sign in / Sign up

Export Citation Format

Share Document