The Learning Curve Associated with Robotic Total Knee Arthroplasty

2017 ◽  
Vol 31 (01) ◽  
pp. 017-021 ◽  
Author(s):  
Nipun Sodhi ◽  
Anton Khlopas ◽  
Nicolas Piuzzi ◽  
Assem Sultan ◽  
Robert Marchand ◽  
...  

AbstractAs with most new surgical technologies, there is an associated learning curve with robotic-assisted total knee arthroplasty (TKA) before surgeons can expect ease of use to be similar to that of manual cases. Therefore, the purpose of this study was to (1) assess robotic-assisted versus manual operative times of two joint reconstructive surgeons separately as well as (2) find an overall learning curve. A total of 240 robotic-assisted TKAs performed by two board-certified surgeons were analyzed. The cases were sequentially grouped into 20 cases and a learning curve was created based on mean operative times. For each surgeon, mean operative times for their first 20 and last 20 robotic-assisted cases were compared with 20 randomly selected manual cases performed by that surgeon as controls prior to the initiation of the robotic-assisted cases. Each of the surgeons first 20 robotic assisted, last 20 robotic assisted, and 20 controls were then combined to create 3 cohorts of 40 cases for analysis. Surgeon 1: First and last robotic cohort operative times were 81 and 70 minutes (p < 0.05). Mean operative times for the first 20 robotic-assisted cases and manual cases were 81 versus 68 minutes (p < 0.05). Mean operative times for the last 20 robotic-assisted cases and manual cases were 70 versus 68 minutes (p > 0.05). Surgeon 2: First and last robotic cohort operative times were 117 and 98 minutes (p < 0.05). Mean operative times for the first 20 robotic-assisted cases and manual cases were 117 versus 95 (p < 0.05). Mean operative times for the last 20 robotic-cohort cases and manual cases were 98 versus 95 (p > 0.05). A similar trend occurred when the times of two surgeons were combined. The data from this study effectively create a learning curve for the use of robotic-assisted TKA. As both surgeons completed their total cases numbers within similar time frames, these data imply that within a few months, a board-certified orthopaedic joint arthroplasty surgeon should be able to adequately perform robotic TKA without adding any operative times.

Author(s):  
Peter Savov ◽  
Lars-Rene Tuecking ◽  
Henning Windhagen ◽  
Jonathan Ehmig ◽  
Max Ettinger

Abstract Introduction Robotic-assisted surgery techniques are increasing in total knee arthroplasty (TKA). One crucial point is the prolonged time of surgery. The primary objective of this study was to determine the learning curve necessary to minimize the time of surgery. The secondary objective was to evaluate the accuracy of the implant alignment when using an imageless robotic system for TKA. Materials and methods In a case–control study, the first 70 consecutive robotic-assisted TKA procedures performed by a single senior surgeon were analyzed with regard to surgery time and implant alignment by comparing the intraoperative plan with the postoperative alignment. The evaluation of the learning curve with respect to surgery time was conducted using cumulative summation (CUSUM) analysis. The joint line height was measured with a new technique. Surgery time and joint line reconstruction were compared to 70 consecutive conventional TKA procedures. Results The learning curve for robotic TKA was completed after 11 cases. The learning curve did not influence the accuracy of joint line obliquity, joint line height, or limb alignment. The intraoperative plan designed for the robotic system was precisely implemented. The mean skin-to-skin time in the robotic group after the learning curve was completed did not differ from that in the manual group. A significant positive correlation was observed between the preoperative hip–knee–ankle angle and the postoperative distalization of the joint line in the robotic-assisted TKA group. Conclusion After completing the initial learning curve of 11 cases, the surgery time required to perform imageless robotic handpiece-assisted TKA was similar to that for the conventional technique. However, no learning curve was observed for the implant positioning when using the imageless robotic system. The implementation of the intraoperative plan was accurate up to < 2°. The precision of the system allows the implementation of different joint balancing approaches between valgus and varus morphotypes.


Author(s):  
Kevin B. Marchand ◽  
Joseph Ehiorobo ◽  
Kevin K. Mathew ◽  
Robert C. Marchand ◽  
Michael A. Mont

AbstractThe learning curve has been established for robotic-assisted total knee arthroplasty (RATKA) during the first month of use; however, there have been no studies evaluating this on a longer term. Therefore, the purpose of this study was to compare operative times for three cohorts during the first year following adoption of RATKA (initial, 6 months, and 1 year) and a prior cohort of manual TKA. We investigated both mean operative times and the variability of operative time in each cohort. This is a learning curve study comparing a single surgeon's experience using RAKTA. The study groups were made up of two cohorts of 60 cementless RATKAs performed at ∼6 months and 1 year of use. A learning curve was created based on the mean operative times and individual operative times were stratified into different cohorts for comparison. Study groups were compared with the surgeon's initial group of 20 cemented RATKAs and 60 cementless manual cases. Descriptive numbers were compiled and mean operative times were compared using Student's t-tests for significant differences with a p-value of < 0.05. The mean surgical times continued to decrease after 6 months of RATKA. In 1 year, the surgeon was performing 88% of the RATKA between 50 and 69 minutes. The initial cohort and 1-year robotic-assisted mean operative times were 81 and 62 minutes, respectively (p < 0.00001). Mean 6-month robotic-assisted operative times were similar to manual times (p = 0.12). A significant lower time was found between the mean operative times for the 1-year robotic-assisted and manual (p = 0.008) TKAs. The data show continued improvement of operative times at 6 months and 1 year when using this new technology. The results of this study are important because they demonstrate how the complexity of a technology which initially increases operative time can be overcome and become more time-effective than conventional techniques.


Author(s):  
Laura Y. Scholl ◽  
Emily L. Hampp ◽  
Vincent Alipit ◽  
Nipun Sodhi ◽  
Manoshi Bhowmik-Stoker ◽  
...  

AbstractThis study compared surgeon cervical (C) spine postures and repetitive motions when performing traditional manual total knee arthroplasty (MTKA) versus robotic-assisted TKA (RATKA). Surgeons wore motion trackers on T3 vertebra and the occiput anatomical landmarks to obtain postural and repetitive motion data during MTKA and RATKA performed on cadavers. We assessed (1) flexion–extension at T3 and the occiput anatomical landmarks, (2) range of motion (ROM) as the percentage of time in the flexion–extension angle, (3) repetition rate, defined as the number of the times T3 and the occiput flexion-extension angle exceeded ±10°; and (4) static posture, where T3 or occiput postures exceed 10° for more than 30 seconds. The average T3 flexion–extension angle for MTKA cases was 5-degree larger than for RATKA cases (19 ± 8 vs. 14 ± 8 degrees). The surgeons who performed MTKA cases spent 15% more time in nonneutral C-spine ROM than those who performed RATKA cases (78 ± 25 vs. 63 ± 36%, p < 0.01). The repetition rate at T3 was 4% greater for MTKA than RATKA (14 ± 5 vs. 10 ± 6 reps/min). The percentage of time spent in static T3 posture was 5% greater for overall MTKA cases than for RATKA cases (15 ± 3 vs. 10 ± 3%). In this cadaveric study, we found differences in cervical and thoracic ergonomics between manual and robotic–assisted TKA. Specifically, we found that RATKA may reduce a surgeon's ergonomic strain at both the T3 and occiput locations by reducing the time the surgeon spends in a nonneutral position.


Author(s):  
H. E. Skibicki ◽  
D. Y. Ponzio ◽  
J. A. Brustein ◽  
Z. D. Post ◽  
A. C. Ong ◽  
...  

The Knee ◽  
2021 ◽  
Vol 31 ◽  
pp. 64-76
Author(s):  
Takao Kaneko ◽  
Tadashi Igarashi ◽  
Kazutaka Takada ◽  
Shu Yoshizawa ◽  
Hiroyasu Ikegami ◽  
...  

2017 ◽  
Vol 31 (01) ◽  
pp. 027-037 ◽  
Author(s):  
Robert Marchand ◽  
Anton Khlopas ◽  
Nipun Sodhi ◽  
Caitlin Condrey ◽  
Nicolas Piuzzi ◽  
...  

AbstractSagittal deformity of the knee is commonly corrected to neutral biomechanical axis (±3 degrees) during total knee arthroplasty (TKA), which is a widely accepted goal. Recent advances in surgical technology have made it possible to accurately plan and fulfill these goals. One of these is robotic-assisted TKA, which has been noted to help increase accuracy and precision of restoring a neutral mechanical axis. While there are data confirming the ability of robotic devices to better correct knee alignment than the manual technique, there is a lack of data concerning the use of the robotic devices in more complex cases, such as those in patients with severe varus or valgus deformity, as well as in flexion contractures. Therefore, the purpose of this case study is to present three cases in which the robotic-assisted TKA device was used to correct a severe varus and severe valgus deformities. Based on this case series, it should be noted that the robotic device can also help correct severe varus/valgus deformities and flexion contractures.


Author(s):  
Kevin B. Marchand ◽  
Rachel Moody ◽  
Laura Y. Scholl ◽  
Manoshi Bhowmik-Stoker ◽  
Kelly B. Taylor ◽  
...  

AbstractRobotic-assisted technology has been developed to optimize the consistency and accuracy of bony cuts, implant placements, and knee alignments for total knee arthroplasty (TKA). With recently developed designs, there is a need for the reporting longer than initial patient outcomes. Therefore, the purpose of this study was to compare manual and robotic-assisted TKA at 2-year minimum for: (1) aseptic survivorship; (2) reduced Western Ontario and McMaster Universities Osteoarthritis Index (r-WOMAC) pain, physical function, and total scores; (3) surgical and medical complications; and (4) radiographic assessments for progressive radiolucencies. We compared 80 consecutive cementless robotic-assisted to 80 consecutive cementless manual TKAs. Patient preoperative r-WOMAC and demographics (e.g., age, sex, and body mass index) were not found to be statistically different. Surgical data and medical records were reviewed for aseptic survivorship, medical, and surgical complications. Patients were administered an r-WOMAC survey preoperatively and at 2-year postoperatively. Mean r-WOMAC pain, physical function, and total scores were tabulated and compared using Student's t-tests. Radiographs were reviewed serially throughout patient's postoperative follow-up. A p < 0.05 was considered significant. The aseptic failure rates were 1.25 and 5.0% for the robotic-assisted and manual cohorts, respectively. Patients in the robotic-assisted cohort had significantly improved 2-year postoperative r-WOMAC mean pain (1 ± 2 vs. 2 ± 3 points, p = 0.02), mean physical function (2 ± 3 vs. 4 ± 5 points, p = 0.009), and mean total scores (4 ± 5 vs, 6 ± 7 points, p = 0.009) compared with the manual TKA. Surgical and medical complications were similar in the two cohorts. Only one patient in the manual cohort had progressive radiolucencies on radiographic assessment. Robotic-assisted TKA patients demonstrated improved 2-year postoperative outcomes when compared with manual patients. Further studies could include multiple surgeons and centers to increase the generalizability of these results. The results of this study indicate that patients who undergo robotic-assisted TKA may have improved 2-year postoperative outcomes.


Sign in / Sign up

Export Citation Format

Share Document