implant alignment
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
pp. 193864002110682
Author(s):  
Benjamin D. Umbel ◽  
Taylor Hockman ◽  
Devon Myers ◽  
B. Dale Sharpe ◽  
Gregory C. Berlet

Background Significant preoperative varus tibiotalar deformity was once believed to be a contraindication for total ankle arthroplasty (TAA). Our primary goal was to evaluate the influence of increasing preoperative varus tibiotalar deformity on the accuracy of final implant positioning using computed tomography (CT)-derived patient-specific guides for TAA. Methods Thirty-two patients with varus ankle arthritis underwent TAA using CT-derived patient-specific guides. Patients were subcategorized into varying degrees of deformity based on preoperative tibiotalar angles (0°-5° neutral, 6°-10° mild, 11°-15° moderate, and >15° severe). Postoperative weightbearing radiographs were used to measure coronal plane alignment of the tibial implant relative to the target axis determined by the preoperative CT template. Average follow-up at the time of data collection was 36.8 months. Results Average preoperative varus deformity was 6.06° (range: 0.66°-16.3°). Postoperatively, 96.9% (30/31) of patients demonstrated neutral implant alignment. Average postoperative tibial implant deviation was 1.54° (range: 0.17°-5.7°). Average coronal deviation relative to the target axis was 1.61° for the neutral group, 1.78° for the mild group, 0.94° for the moderate group, and 1.41° for the severe group (P = .256). Preoperative plans predicted 100% of tibial and talar implant sizes correctly within 1 size of actual implant size. Conclusion. Our study supports the claim that neutral postoperative TAA alignment can be obtained using CT-derived patient-specific instrumentation (PSI). Furthermore, final implant alignment accuracy with PSI does not appear to be impacted by worsening preoperative varus deformity. All but one patient (96.9%) achieved neutral postoperative alignment relative to the predicted target axis. Level of Evidence: Level IV, Clinical Case Series


2022 ◽  
pp. 105555
Author(s):  
Satoru Harada ◽  
Satoshi Hamai ◽  
Goro Motomura ◽  
Satoshi Ikemura ◽  
Masanori Fujii ◽  
...  

2021 ◽  
Author(s):  
Matthew Blomquist ◽  
Jonathon Blank ◽  
Dylan Schmitz ◽  
Darryl Thelen ◽  
Joshua Roth

Surgeons routinely perform incremental releases on overly tight ligaments during total knee arthroplasty (TKA) to reduce ligament tension and achieve their desired implant alignment. However, current methods to assess whether the surgeon achieved their desired reduction in the tension of a released ligament are subjective and/or do not provide a quantitative metric of tension in an individual ligament. Accordingly, the purpose of this study was to determine whether shear wave tensiometry, a novel method to assess tension in individual ligaments based on the speed of shear wave propagation, can detect changes in ligament tension following incremental releases. In seven medial and eight lateral collateral porcine ligaments (MCL and LCL, respectively), we measured shear wave speeds and ligament tension before and after incremental releases consisting of punctures with an 18-gauge needle. We found that shear wave speed squared decreased linearly with decreasing tension in both the MCL (r^2 avg = 0.76) and LCL (r^2 avg = 0.94). We determined that errors in predicting tension following incremental releases were 24.5 N and 12.2 N in the MCL and LCL, respectively, using specimen-specific calibrations. These results suggest shear wave tensiometry is a promising method to objectively measure the tension reduction in released structures. Clinical Significance: Direct, objective measurements of the tension changes in individual ligaments following release could enhance surgical precision during soft tissue balancing in TKA. Thus, shear wave tensiometry could help surgeons reduce the risk of poor outcomes associated with overly tight ligaments, including residual knee pain and stiffness.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Ran Schwarzkopf ◽  
Morteza Meftah ◽  
Scott E. Marwin ◽  
Michelle A. Zabat ◽  
Jeffrey M. Muir ◽  
...  

Abstract Purpose Navigated total knee arthroplasty (TKA) improves implant alignment by providing feedback on resection parameters based on femoral and tibial cutting guide positions. However, saw blade thickness, deflection, and cutting guide motion may lead to final bone cuts differing from planned resections, potentially contributing to suboptimal component alignment. We used an imageless navigation device to intraoperatively quantify the magnitude of error between planned and actual resections, hypothesizing final bone cuts will differ from planned alignment. Materials and methods A retrospective study including 60 consecutive patients undergoing primary TKA using a novel imageless navigation device was conducted. Device measurements of resection parameters were obtained via attachment of optical trackers to femoral and tibial cutting guides prior to resection. Following resection, optical trackers were placed directly on the bone cut surface and measurements were recorded. Cutting guide and bone resection measurements of both femoral and tibial varus/valgus, femoral flexion, tibial slope angles, and both femoral and tibial medial and lateral resection depths were compared using a Student's t-test. Results Femoral cutting guide position differed from the actual cut by an average 0.6 ± 0.5° (p = 0.85) in the varus/valgus angle and 1.0 ± 1.0° (p = 0.003) in the flexion/extension angle. The difference between planned and actual cut measurements for medial and lateral femoral resection depth was 1.1 ± 1.1 mm (p = 0.32) and 1.2 ± 1.0 mm (p = 0.067), respectively. Planned cut measurements based on tibial guide position differed from the actual cut by an average of 0.9 ± 0.8° (p = 0.63) in the varus/valgus angle and 1.1 ± 1.0° (p = 0.95) in slope angle. Measurement of medial and lateral tibial resection depth differed by an average of 0.1 ± 1.8 mm (p = 0.78) and 0.2 ± 2.1 mm (p = 0.85), respectively. Conclusions Significant discrepancies between planned and actual femoral bone resection were demonstrated for flexion/extension angle, likely the result of cutting error. Our data highlights the importance of cut verification postresection to confirm planned resections are achieved, and suggests imageless navigation may be a source of feedback that would allow surgeons to intraoperatively adjust resections to achieve optimal implant alignment.


Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Siddharth M. Shah

Abstract Background Limb and implant alignment along with soft tissue balance plays a vital role in the outcomes after total knee arthroplasty (TKA). Computer navigation for TKA was first introduced in 1997 with the aim of implanting the prosthetic components with accuracy and precision. This review discusses the technique, current status, and scientific evidence pertaining to computer-navigated TKA. Body The adoption of navigated TKA has slowly but steadily increased across the globe since its inception 25 years ago. It has been more rapid in some countries like Australia than others, like the UK. Contemporary, large console-based navigation systems help control almost every aspect of TKA, including the depth and orientation of femoral and tibial resections, soft-tissue release, and customization of femoral and tibial implant positions in order to obtain desired alignment and balance. Navigated TKA results in better limb and implant alignment and reduces outliers as compared to conventional TKA. However, controversy still exists over whether improved alignment provides superior function and longevity. Surgeons may also be hesitant to adopt this technology due to the associated learning curve, slightly increased surgical time, fear of pin site complications, and the initial set-up cost. Furthermore, the recent advent of robotic-assisted TKA which provides benefits like precision in bone resections and avoiding soft-tissue damage due to uncontrolled sawing, in addition to those of computer navigation, might be responsible for the latter technology taking a backseat. Conclusion This review summarizes the current state of computer-navigated TKA. The superiority of computer navigation to conventional TKA in improving accuracy is well established. Robotic-assisted TKA provides enhanced functionality as compared to computer navigation but is significantly more expensive. Whether robotic-assisted TKA offers any substantive advantages over navigation is yet to be conclusively proven. Irrespective of the form, the use of computer-assisted TKA is on the rise worldwide and is here to stay.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meredith P. Crizer ◽  
Amer Haffar ◽  
Andrew Battenberg ◽  
Mikayla McGrath ◽  
Ryan Sutton ◽  
...  

Robotic technology has reduced the errors of implant alignment in unicompartmental knee arthroplasty (UKA), but its impact on functional recovery after UKA is poorly defined. The purpose of this study was to compare early functional recovery, pain levels, and satisfaction in UKA performed with either robotic assistance or conventional methods. A retrospective analysis was performed on 89 matched consecutive patients who underwent outpatient UKA by a single physician using either conventional instruments (n = 39) or robotic methods (n = 50), with otherwise identical perioperative protocols. Outcomes studied included Lower Extremity Functional Score (LEFS), new Knee Society Score (KSS), Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS-JR.), VR/SF-12, Visual Analog Scale (VAS) pain scores, and perioperative opioid consumption. Patients in the robotic cohort had superior early functional outcomes, with greater LEFS (conventional = 23; robotic = 31) at 1 week post-op p = 0.015 and KOOS-JR (conventional = 74; robotic = 81) at up to 6 months post-op p = 0.037 ; these two values remained statistically significant after mixed-model regression analysis p = 0.010 ; p = 0.023 , respectively. At 1 year post-op, expectations were more likely to be met in those who received robotic assistance p = 0.06 . No differences were reported with respect to postoperative opioid usage p = 0.320 , reoperations p = 1.00 , and complications p = 0.628 . Robotic-assisted UKA resulted in more rapid recovery and less early postoperative pain and were more likely to meet expectations than conventional UKA, although functional differences equilibrated by 1 year postoperatively. Further follow-up is necessary to determine if implant durability is impacted by robotics.


Author(s):  
Peter Savov ◽  
Lars-Rene Tuecking ◽  
Henning Windhagen ◽  
Jonathan Ehmig ◽  
Max Ettinger

Abstract Introduction Robotic-assisted surgery techniques are increasing in total knee arthroplasty (TKA). One crucial point is the prolonged time of surgery. The primary objective of this study was to determine the learning curve necessary to minimize the time of surgery. The secondary objective was to evaluate the accuracy of the implant alignment when using an imageless robotic system for TKA. Materials and methods In a case–control study, the first 70 consecutive robotic-assisted TKA procedures performed by a single senior surgeon were analyzed with regard to surgery time and implant alignment by comparing the intraoperative plan with the postoperative alignment. The evaluation of the learning curve with respect to surgery time was conducted using cumulative summation (CUSUM) analysis. The joint line height was measured with a new technique. Surgery time and joint line reconstruction were compared to 70 consecutive conventional TKA procedures. Results The learning curve for robotic TKA was completed after 11 cases. The learning curve did not influence the accuracy of joint line obliquity, joint line height, or limb alignment. The intraoperative plan designed for the robotic system was precisely implemented. The mean skin-to-skin time in the robotic group after the learning curve was completed did not differ from that in the manual group. A significant positive correlation was observed between the preoperative hip–knee–ankle angle and the postoperative distalization of the joint line in the robotic-assisted TKA group. Conclusion After completing the initial learning curve of 11 cases, the surgery time required to perform imageless robotic handpiece-assisted TKA was similar to that for the conventional technique. However, no learning curve was observed for the implant positioning when using the imageless robotic system. The implementation of the intraoperative plan was accurate up to < 2°. The precision of the system allows the implementation of different joint balancing approaches between valgus and varus morphotypes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shotaro Watanabe ◽  
Ryuichiro Akagi ◽  
Yuki Shiko ◽  
Yoshimasa Ono ◽  
Yohei Kawasaki ◽  
...  

Abstract Background The evaluation of postoperative total knee arthroplasty (TKA) alignment mainly relies on measurement data obtained from plain radiographs. The aim of this retrospective observational study was to document the intra- and inter-observer reliability in assessment of TKA component positioning after surgery using a three-dimensional (3D) computed tomography (CT) image matching system. Methods Fourteen knees from 14 patients who received primary TKA were included, and images were analyzed by blinded readers not associated with the surgeries. The examiner digitized the reference points according to defined landmarks, and the designated size component was superimposed to the 3D reconstructed CT model for measurement. In addition to the evaluation of implant position against the coronal and sagittal lower limb mechanical axes that were defined based on bony landmarks, implant position against axes connecting implant-based reference points that are easier to indicate was evaluated. Results The overall intra- and inter-observer reliabilities determined by the intraclass correlation coefficients (ICC) of the implant alignment measurement for both femoral and tibial components were good (ICC > 0.60), except in the direction of femoral flexion and extension, for both mechanical and implant-based axes. The difference between implant alignment measurements according to the traditional mechanical axis and the implant-based axis ranged between means of 0.08o and 1.70o and were statistically significantly different. Conclusions The postoperative evaluation of implant position in the coronal and sagittal planes using 3D-CT image matching is reliable and has good reproducibility except for the sagittal alignment assessment of the femoral component. The measured implant position according to the traditional mechanical axis and the implant-based axis were slightly but significantly different.


2021 ◽  
Vol 10 (3) ◽  
pp. 391
Author(s):  
Rani D’haese ◽  
Tom Vrombaut ◽  
Geert Hommez ◽  
Hugo De Bruyn ◽  
Stefan Vandeweghe

Purpose: The aim of this in vitro study is to evaluate the accuracy of implant position using mucosal supported surgical guides, produced by a desktop 3D printer. Methods: Ninety implants (Bone Level Roxolid, 4.1 mm × 10 mm, Straumann, Villerat, Switzerland) were placed in fifteen mandibular casts (Bonemodels, Castellón de la Plana, Spain). A mucosa-supported guide was designed and printed for each of the fifteen casts. After placement of the implants, the location was assessed by scanning the cast and scan bodies with an intra-oral scanner (Primescan®, Dentsply Sirona, York, PA, USA). Two comparisons were performed: one with the mucosa as a reference, and one where only the implants were aligned. Angular, coronal and apical deviations were measured. Results: The mean implant angular deviation for tissue and implant alignment were 3.25° (SD 1.69°) and 2.39° (SD 1.42°) respectively, the coronal deviation 0.82 mm (SD 0.43 mm) and 0.45 mm (SD 0.31 mm) and the apical deviation 0.99 mm (SD 0.45 mm) and 0.71 mm (SD 0.43 mm). All three variables were significantly different between the tissue and implant alignment (p < 0.001). Conclusion: Based on the results of this study, we conclude that guided implant surgery using desktop 3D printed mucosa-supported guides has a clinically acceptable level of accuracy. The resilience of the mucosa has a negative effect on the guide stability and increases the deviation in implant position.


Sign in / Sign up

Export Citation Format

Share Document