scholarly journals Radical Biocatalysis: Using Non-Natural Single Electron Transfer Mechanisms to Access New Enzymatic Functions

Synlett ◽  
2019 ◽  
Vol 31 (03) ◽  
pp. 248-254 ◽  
Author(s):  
Todd K. Hyster

Exploiting non-natural reaction mechanisms within native enzymes is an emerging strategy for expanding the synthetic capabilities of biocatalysts. When coupled with modern protein engineering techniques, this approach holds great promise for biocatalysis to address long-standing selectivity and reactivity challenges in chemical synthesis. Controlling the stereochemical outcome of reactions involving radical intermediates, for instance, could benefit from biocatalytic solutions because these reactions are often difficult to control by using existing small molecule catalysts. General strategies for catalyzing non-natural radical reactions within enzyme active sites are, however, undeveloped. In this account, we highlight three distinct strategies developed in our group that exploit non-natural single electron transfer mechanisms to unveil previously unknown radical biocatalytic functions. These strategies allow common oxidoreductases to be used to address the enduring synthetic challenge of asymmetric hydrogen atom transfer.1 Introduction2 Photoinduced Electron Transfer from NADPH3 Ground State Electron Transfer from Flavin Hydroquinone4 Enzymatic Redox Activation in NADPH-Dependent Oxidoreductases5 Conclusion

2013 ◽  
Vol 67 (11) ◽  
Author(s):  
Zoran Marković ◽  
Jelena Đorović ◽  
Milan Dekić ◽  
Milanka Radulović ◽  
Svetlana Marković ◽  
...  

AbstractAntioxidant activity of erodiol was examined at the M05-2X/6-311+G(d,p) level of theory in the gas and aqueous phases. The structure and energy of radicals and anions of the most stable erodiol rotamer were analyzed. To estimate antioxidant potential of erodiol, different molecular properties were examined: bond dissociation enthalpy, proton affinity together with electron transfer energy, and ionization potential followed by proton dissociation enthalpy. It was found that hydrogen atom transfer is the prevailing mechanism of erodiol behavior in gas; whereas single electron transfer followed by proton transfer and sequential proton loss electron transfer mechanisms represent the thermodynamically preferred reaction paths in water.


2018 ◽  
Vol 9 (44) ◽  
pp. 8453-8460 ◽  
Author(s):  
Takafumi Ide ◽  
Joshua P. Barham ◽  
Masashi Fujita ◽  
Yuji Kawato ◽  
Hiromichi Egami ◽  
...  

Catalyst controlled regio-, and chemo-selective C-H arylation of benzylamines.


The Analyst ◽  
2020 ◽  
Vol 145 (2) ◽  
pp. 557-571 ◽  
Author(s):  
Ziyad Ben Ahmed ◽  
Yousfi Mohamed ◽  
Viaene Johan ◽  
Bieke Dejaegher ◽  
Kristiaan Demeyer ◽  
...  

Antioxidant activity can be measured by a variety of methods, that include hydrogen atom transfer (HAT) and single electron transfer (ET) methods.


2014 ◽  
Vol 43 (32) ◽  
pp. 12175-12186 ◽  
Author(s):  
Armin H. Meyer ◽  
Agnieszka Dybala-Defratyka ◽  
Peter J. Alaimo ◽  
Inacrist Geronimo ◽  
Ariana D. Sanchez ◽  
...  

Isotope effects and position-specificity of hydroxylation pinpoint hydrogen atom transfer (HAT) as prevailing mechanism in P450 catalyzed N-dealkylation of atrazine.


2018 ◽  
Vol 17 (05) ◽  
pp. 1850036
Author(s):  
Ravi Joshi

Structure and energies of capsaicin and its probable transients formed in oxidation processes (single electron transfer and hydrogen atom transfer) have been investigated using theoretical calculations. Molecular geometries and energies of truncated and complete capsaicin structures have been optimized using density functional theory (DFT) with Becke three-parameter Lee-Yang-Parr (B3LYP) functional and 6–31[Formula: see text]G(d) basis set. The stable geometries have been confirmed by vibrational analysis. The calculations suggest that single-electron transfer takes place at phenolic O-atom in the first step followed by delocalization of positive charge over the whole molecule. Further, the first step of hydrogen atom abstraction should take place at phenolic group due to lowest dissociation energy but post-optimization bond dissociation energy is least for benzylic group in the side chain as compared to other transients. Effect of water as a solvent on the energies has also been studied using self-consistent reaction field calculation. Similar results are obtained for truncated and complete capsaicin structures. The present study also includes Mulliken spin, charge, vibrational frequencies and assignments of frequencies of the transients. The present study provides explanation for the observation of phenoxyl radical in fast kinetic studies using pulse radiolysis study and, formation of breakdown and dimeric products in other studies.


Sign in / Sign up

Export Citation Format

Share Document