Protein C Global Assay in the Evaluation of Women with Idiopathic Pregnancy Loss

2002 ◽  
Vol 88 (07) ◽  
pp. 32-36 ◽  
Author(s):  
Galit Sarig ◽  
Naomi Lanir ◽  
Ron Hoffman ◽  
Benjamin Brenner

SummarySince the majority of thrombophilic defects in women with pregnancy loss are in the protein C pathway, we have prospectively determined the diagnostic value of a protein C global assay in 60 consecutive women with pregnancy loss compared to 61 controls. Protein C activation time normalized ratio (PCAT-NR) in pregnancy loss women was significantly lower than controls (0.74 ± 0.16 vs. 0.99 ± 0.2; P <0.0001). PCAT-NR lower than cut off level of 0.8 were found in 42/60 (70%) of PL women compared to 7/61 (11%) of controls (OR = 18.0, 95% CI: 6.3-53.4, P < 0.0001).Cut-off level of 0.8 successfully identified all pregnancy loss women with abnormality in the protein C pathway (12 factor V Leiden, 7 APC-Resistance without factor V Leiden, 15 low levels of protein S and 1 of protein C). Moreover, PCAT-NR below 0.8 was documented in 15/29 (52%) of PL women without thrombophilic risk factor compared to 3/55 (5%) of controls (OR = 18.6, 95% CI: 4.2-95.2, P <0.0001).These results suggest that ProC Global may be useful as a screening test for protein C pathway abnormalities and may serve as a new thrombophilic risk factor in women with pregnancy loss.

Blood ◽  
2014 ◽  
Vol 124 (9) ◽  
pp. 1531-1538 ◽  
Author(s):  
Farida Omarova ◽  
Shirley Uitte de Willige ◽  
Paolo Simioni ◽  
Robert A. S. Ariëns ◽  
Rogier M. Bertina ◽  
...  

Key Points Fibrinogen, and particularly fibrinogen γ′, counteracts plasma APC resistance, the most common risk factor for venous thrombosis. The C-terminal peptide of the fibrinogen γ′ chain inhibits protein C activation, but still improves the response of plasma to APC.


2017 ◽  
Vol 12 (1) ◽  
pp. 162-166 ◽  
Author(s):  
Mahmoud Mohamed Elgari ◽  
Nadir Ahmed Ibrahim ◽  
Abdel Rahim Mahmoud Muddathir ◽  
Faris Mergheni Eltoom ◽  
Ibrahim M Ibrahim

AbstractThrombophilia may be anticipated by single or combined hereditary defects in encoding genes factor V, Prothrombin, and MTHFR. The aim of this study was to determine the prevalence and associated risks of V Leiden (G1691A), Prothrombin (G20210A), and MTHFR (C677T) mutations in Saudi women with Deep Vein Thrombosis (DVT) and women with recurrent pregnancy loss (RPL). Protein C and protein S activity were measured to determine combined effects, if any. We examined 60 women with a history of DVT and 60 with RPL, extracted DNA from EDTA blood and determined three mutations by using multiplex PCR reactions followed by Strip Assay KIT. Pro C Global assay was used to determine the cutoff value [PCATNR = 0.80]. Protein C/S chromogenic assay was used to estimate protein C and S percentages. Frequency of Factor V Leiden G/A genotype in patients with DVT 7 (11.6%) had a significant association for DVT χ2 (OR = 5.1, P = 0.03). In women with RPL the three mutations did not show any significant association, levels of Protein C, protein S and PCAT-NR in patient groups not different from controls (P > 0.05). In conclusion, we recommend expanding on these data to provide larger-scale studies.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1271-1276 ◽  
Author(s):  
Marieke C.H. de Visser ◽  
Frits R. Rosendaal ◽  
Rogier M. Bertina

Abstract Activated protein C (APC) resistance caused by the factor V Leiden mutation is associated with an increased risk of venous thrombosis. We investigated whether a reduced response to APC, not due to the factor V point mutation, is also a risk factor for venous thrombosis. For this analysis, we used the Leiden Thrombophilia Study (LETS), a case-control study for venous thrombosis including 474 patients with a first deep-vein thrombosis and 474 age- and sex-matched controls. All carriers of the factor V Leiden mutation were excluded. A dose-response relationship was observed between the sensitivity for APC and the risk of thrombosis: the lower the normalized APC sensitivity ratio, the higher the associated risk. The risk for the lowest quartile of normalized APC-SR (&lt;0.92), which included 16.5% of the healthy controls, compared with the highest quartile (normalized APC-SR &gt; 1.05) was greater than fourfold increased (OR = 4.4; 95% confidence interval, 2.9 to 6.6). We adjusted for VIII:C levels, which appeared to affect our APC resistance test. The adjusted (age, sex, FVIII:C) odds ratio for the lowest quartile was 2.5 (95% confidence interval, 1.5 to 4.2). So, after adjustment for factor VIII levels, a reduced response to APC remained a risk factor. Our results show that a reduced sensitivity for APC, not caused by the factor V Leiden mutation, is a risk factor for venous thrombosis.


2011 ◽  
Vol 106 (11) ◽  
pp. 901-907 ◽  
Author(s):  
Svetlana Tchaikovski ◽  
Margareta Holmström ◽  
Jan Rosing ◽  
Katarina Bremme ◽  
Gerd Lärfars ◽  
...  

SummaryIdentification of patients at high risk of recurrence after a first event of venous thromboembolism (VTE) remains difficult. Resistance to activated protein C (APC) is a known risk factor for VTE, but data on the risk of recurrence is controversial. We wanted to investigate whether APC resistance in the absence of factor V Leiden, determined with global coagulation test such as the thrombin generation assay, could be used as a marker for increased risk of recurrent VTE among women 18–65 years old after a first event of VTE. In a cohort of 243 women with a first event of VTE, plasma was collected after discontinuation of anticoagulant treatment and the patients were followed up for 46 months (median). Thrombin generation was measured via calibrated automated thrombography, at 1 pM and 10 pM of tissue factor (TF). In women without factor V Leiden (n=117), samples were analysed in the absence and in the presence of APC. Increase in ETP (endogenous thrombin potential) and peak height analysed in the presence of APC correlated significantly with higher risk of recurrence. At 1 pM, peak height correlated with increased risk of recurrence. In conclusion, high thrombin generation in the presence of APC, in women after a first event of VTE is indicative for an increased risk of a recurrence. We also found that thrombin generation at low TF (1 pM) is correlated with the risk of recurrence. Our data suggest that APC resistance in the absence of factor V Leiden is a risk factor for recurrent VTE.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 216-216
Author(s):  
Hartmut Weiler ◽  
Hai-Po Liang ◽  
Edward J Kerschen ◽  
Alireza Rezaie ◽  
Jose A. Fernandez ◽  
...  

Abstract BACKGROUND: The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. The naturally occurring R506Q Leiden polymorphism in fV largely abrogates the anticoagulant functions of aPC by rendering fVa partially refractory to aPC proteolysis, but also by preventing the formation of the anticoagulant cofactor form of fV. Among patients enrolled in the placebo arm of the PROWESS sepsis trial, heterozygous fV Leiden carriers showed significantly reduced mortality 1, and a similar survival advantage of heterozygous Leiden carriers was documented in mice harboring the fV R504Q mutation (equivalent to the human R506Q mutation) that were challenged with endotoxin1, gram-positive (S.aureus), or gram-negative infection (Y.pestis)2. The objective of the current study was to examine how aPC-resistance of fV Leiden modulates responsiveness to sepsis therapy with aPC in mice. RESULTS: In murine sepsis models of S.aureus-induced septic peritonitis, aPC-resistance of endogenous fV R504Q prevents marked disease stage-specific deleterious effects associated with aPC's anticoagulant activity, but also abrogated the mortality-reducing benefits of therapy with the signaling-selective 5A-aPC variant that only exerts minimal anticoagulant activity towards activated fVa. In mice homozygous for the R504Q mutation (fVQQ mice), 5A-aPC failed to suppress inflammatory gene expression in the presence of fVR504Q. This finding was reproduced in an in vitro culture model of murine RAW cells and bone marrow-derived dendritic cells, in which thrombosis and thrombin generation play no role. Gene expression analyses and functional in vitro studies of LPS-induced inflammatory cell signaling showed that fV, as well as protein S were required for the aPC-mediated suppression of inflammatory tissue factor-PAR2 signaling3. Structure-function analyses of recombinant variants of aPC and fV showed that this anti-inflammatory cofactor function of protein S and fV involved the same structural features that underlie their accessory role for aPC's anticoagulant function, but did not involve the degradation of activated fVa or fVIIIa. CONCLUSION: These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection. This cofactor function is structurally related, but mechanistically distinct from the anticoagulant cofactor activities of protein S and fV. APC-resistance of fV thus emerges as a response modifier of the endogenous host response to infection, as well as the outcome of sepsis therapy with normal APC and signaling-selective variants thereof. REFERENCES 1. Kerlin BA, Yan SB, Isermann BH, et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood. 2003;102(9):3085-3092. 2. Kerschen E, Hernandez I, Zogg M, Maas M, Weiler H. Survival advantage of heterozygous factor V Leiden carriers in murine sepsis. J Thromb Haemost. 2015;13(6):1073-1080. 3. Liang HP, Kerschen EJ, Hernandez I, et al. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice. Blood. 2015. Disclosures Camire: Pfizer: Consultancy, Patents & Royalties, Research Funding; Novo Nordisk: Research Funding; Spark Therapeutics: Membership on an entity's Board of Directors or advisory committees.


2002 ◽  
Vol 8 (4) ◽  
pp. 319-324 ◽  
Author(s):  
Lothar Heilmann ◽  
Georg-Friedrich v. Tempelhoff ◽  
Kuhnhart Pollow

Preeclampsia/HELLP syndrome has been associated with a high incidence of defects in the protein C pathway and increased anticardiolipin-antibodies/lupus anticoagulants. It is also apparent that thrombophilia is responsible for other pregnancy complications, such as recurrent spontaneous abortion, fetal growth restriction, intrauterine fetal death, and abruptio placentae. ProC® Global is a new global clotting assay designed to evaluate the abnormalities in the protein C anticoagulant pathway. It is based on the ability of endogenous activated protein C, generated by activation of protein C by Protac®, to prolong an activated partial thromboplastin time. A total of 61 patients with a history of severe preeclampsia or HELLP syndrome and 61 normal pregnant women (controls) were evaluated, 15 of whom had factor V Leiden mutation, 12 had protein C/S deficiency, 30 had a repeated lupus anticoagulants, and 27 increased anticardiolipin antibodies (ACA). All carriers of factor V Leiden mutation (N= 15) as well as all the patients with low activated protein C (APC) resistance ratio (N= 15) had a ProC® Global normalized ratio (NR) less than 0.80 (sensitivity 100%). Twenty-four patients positive for the lupus anticoagulants (LA) and 19 patients positive for ACA (> 5.0 IgG U/mL) had a ProC® Global NR less than 0.8, while six and eight, respectively, had a ProC® Global NR greater than 0.8 (sensitivity, 70%-80%). The detection of a reduced protein C/protein S activity (<70%) was low (sensitivity, 33%-44%). In 25 cases with pathologic ProC® Global results, a thrombophilic defect (protein S/LA/ACA without APC resistance) was diagnosed in 18 women; but in 7 cases, no known thrombophilic defect was present. ProC® Global is a new screening test to identify patients with defects of the protein C system and an activated clotting system in preeclampsia but cannot correctly cover each thrombophilic component.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1271-1276 ◽  
Author(s):  
Marieke C.H. de Visser ◽  
Frits R. Rosendaal ◽  
Rogier M. Bertina

Activated protein C (APC) resistance caused by the factor V Leiden mutation is associated with an increased risk of venous thrombosis. We investigated whether a reduced response to APC, not due to the factor V point mutation, is also a risk factor for venous thrombosis. For this analysis, we used the Leiden Thrombophilia Study (LETS), a case-control study for venous thrombosis including 474 patients with a first deep-vein thrombosis and 474 age- and sex-matched controls. All carriers of the factor V Leiden mutation were excluded. A dose-response relationship was observed between the sensitivity for APC and the risk of thrombosis: the lower the normalized APC sensitivity ratio, the higher the associated risk. The risk for the lowest quartile of normalized APC-SR (<0.92), which included 16.5% of the healthy controls, compared with the highest quartile (normalized APC-SR > 1.05) was greater than fourfold increased (OR = 4.4; 95% confidence interval, 2.9 to 6.6). We adjusted for VIII:C levels, which appeared to affect our APC resistance test. The adjusted (age, sex, FVIII:C) odds ratio for the lowest quartile was 2.5 (95% confidence interval, 1.5 to 4.2). So, after adjustment for factor VIII levels, a reduced response to APC remained a risk factor. Our results show that a reduced sensitivity for APC, not caused by the factor V Leiden mutation, is a risk factor for venous thrombosis.


2002 ◽  
Vol 88 (11) ◽  
pp. 716-722 ◽  
Author(s):  
Hirohiko Kuratsune ◽  
Etsuji Suehisa ◽  
Tomio Kawasaki ◽  
Takashi Machii ◽  
Teruo Kitani ◽  
...  

SummaryAnti-phospholipid (aPL) antibodies (Abs) are well known to be associated with thromboembolic events in patients with systemic lupus erythematosus (SLE). However, the clinical relevance of aPL Abs in patients without SLE (non-SLE) who have venous thromboembolism remains unclear. We evaluated 143 non-SLE patients with a first episode of clinically suspected deep vein thrombosis (DVT) by using objective tests for diagnosing DVT and laboratory tests including the activated protein C resistance (APC-R) test, the factor V Leiden test, and various aPL Abs. The prevalence of acquired APC-R, in which case there was no factor V Leiden mutation, was significantly higher in patients with DVT (15/58 cases, 25.9%, p <0.0001) than in those without DVT (3/80 cases, 3.7%), and confirmed that acquired APC-R was a strong risk factor for DVT (odds ratio [OR], 8.95; 95% confidence intervals [CI], 2.45-32.7; p <0.001). Multivariate logistic analysis revealed that the presence of LA, aCL, anti- β2-glycoprotein I, anti-prothrombin and anti-protein C Abs was not reliable as a risk factor for DVT in non-SLE patients, and that the presence of anti-protein S Abs was the most significant risk factor for DVT (OR, 5.88; 95% CI, 1.96-17.7; p <0.002). Furthermore, the presence of anti-protein S Abs was strongly associated with acquired APC-R (OR, 57.8; 95% CI, 8.53-391; p <0.0001). These results suggest that acquired APC-R may reflect functional interference by anti-protein S Abs of the protein C pathway, which action may represent an important mechanism for the development DVT in non-SLE patients.


2020 ◽  
Vol 40 (01) ◽  
pp. 012-021
Author(s):  
Björn Dahlbäck

AbstractVenous thromboembolism constitutes a major medical problem afflicting millions of individuals worldwide each year. Its pathogenesis is multifactorial, involving both environmental and genetic risk factors. The most common genetic risk factor known to date is a mutation in the factor V (FV) gene (R506Q or FV Leiden), which impairs the normal regulation of FV by activated protein C (APC). APC is an important regulator of blood coagulation, cleaving and inactivating not only FV/FVa but also activated factor VIII (FVIIIa). In FVa, APC cleaves several sites, Arg506 (R506) being one of them. The R506Q mutation results in the APC resistance phenotype and a lifelong hypercoagulable state. A prothrombin gene mutation is another relatively frequent thrombosis risk factor, whereas deficiencies of the anticoagulant proteins antithrombin, protein C, or protein S are less common. As a result of the high prevalence of FV and prothrombin mutations in the general population, combinations of genetic defects are relatively common. Such individuals have highly increased risk of thrombosis.


Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3518-3523 ◽  
Author(s):  
B Zoller ◽  
A Berntsdotter ◽  
P Garcia de Frutos ◽  
B Dahlback

Inherited resistance to activated protein C (APC), which is caused by a single point mutation in the gene for factor V, is a common risk factor for thrombosis. In this study, the prevalence of APC resistance in 18 unrelated thrombosis-prone families with inherited protein S deficiency was investigated to determine its role as additional genetic risk factor for thrombosis. In addition, a detailed evaluation of the clinical manifestations in these families was performed. Venous thrombotic events had occurred in 47% of the protein S-deficient patients (64/136) and in 7% of relatives without protein S deficiency (14/191). As estimated from Kaplan-Meier analysis, 50% of protein S-deficient family members and 12% of those without protein S deficiency had had manifestation of venous thromboembolism at the age of 45 years. The age at the first thrombotic event ranged from 10 to 81 years (mean, 32.5 years) and a large intrafamilial and interfamilial variability in expression of thrombotic symptoms was seen. The factor V gene mutation related to APC resistance was present in 6 (38%) of 16 probands available for testing; in total, the mutation was found in 7 (39%) of the 18 families. In family members with combined defects, 72% (13/18) had had thrombosis as compared with 19% (4/21) of those with only protein S deficiency and 19% (4/21) of those with only the factor V mutation. In conclusion, APC resistance was found to be highly prevalent in thrombosis-prone families with protein S deficiency and was an additional genetic risk factor for thrombosis in these families. The results suggest thrombosis-prone families with protein S deficiency often to be affected by yet another genetic defect.


Sign in / Sign up

Export Citation Format

Share Document