An In-vitro Model to Study Device-induced Thrombosis and Embolism:

2000 ◽  
Vol 83 (02) ◽  
pp. 322-326 ◽  
Author(s):  
Sivaprasad Sukavaneshvar ◽  
Syed Mohammad ◽  
Kenneth Solen

SummaryA bovine in-vitro model was developed to investigate device-induced thromboembolism (TE) and its pharmacological intervention, using a stent as a prototype device. Emboli were assessed continuously using a light-scattering microemboli detector (LSMD). Thrombus on the stent was assessed gravimetrically at the end of the experiment. The contribution of the stent as the predominant source of detectable thromboemboli in this model was verified by placing LSMD probes upstream and downstream of the stent. The effectiveness of ethylenedinitrilo-tetraacetic-acid (EDTA) and three anti-thrombogenic agents (aspirin, dipyridamole, and tirofiban) for mitigating device-induced TE was also assessed. The results show that 1) the model has potential to study device-induced TE and the efficacy of possible interventional strategies, 2) the LSMD is capable of continuous, non-invasive, real-time assessment of embolism, 3) the assessment of embolization may constitute an important part of evaluating hemocompatibility, 4) tirofiban is effective in reducing both stent-induced thrombosis and embolism above certain concentrations.

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1118
Author(s):  
Yao Zhang ◽  
Ning Yang ◽  
Liangliang Xie ◽  
Fangyu Shu ◽  
Qian Shi ◽  
...  

In vitro models of the liver have a good simulation of the micro-liquid environment inside the human liver and the communication between cell tissues, which provides an important research tool for drug research and liver disease treatment. In this paper, we designed a 3D liver chip and real-time monitoring system based on microfluidic technology. The in vitro model of the liver on the chip was established by the three-dimensional microfluidic chip pipeline and the corresponding microwell array. Meanwhile, the culture medium is continuously injected on the chip, and the electrochemical impedance spectroscopy and near-infrared spectroscopy of the liver chip are recorded and analyzed from day one to day five. When the 3D cultured liver chip in vitro model reached a certain period and stabilized, paracetamol with varying gradients of concentration was applied to the cultured cells for drug resistance testing. The experimental results show that the liver chip and its monitoring system designed in this paper can maintain 100% cell viability of hepatocytes in vitro for a long time. Furthermore, it can meet the requirements of measurement technologies such as electrical impedance measurement and near-infrared spectroscopy in real-time, providing a stable culture platform for the further study of organ chips.


Sign in / Sign up

Export Citation Format

Share Document