Factor XII Does not Initiate Prekallikrein Activation on Endothelial Cells

1998 ◽  
Vol 80 (07) ◽  
pp. 74-81 ◽  
Author(s):  
Rasmus Røjkjær ◽  
Ahmed Hasan ◽  
Guacyara Motta ◽  
Inger Schousboe ◽  
Alvin Schmaier

SummaryIt is well known that on artificial surfaces, binding and autoactivation of factor XII (FXII) is the initiating event of plasma prekallikrein (PK) activation. We performed investigations to examine whether this mechanism was true for FXII activation on endothelial cells (HUVEC). Activation of PK on HUVEC required an optimal substrate and Zn2+ concentration, the latter of which varied with the buffer’s carrier protein. Maximal PK activation required the addition of 250 μM or 10 μM Zn2+ to buffers containing bovine serum albumin (BSA) or gelatin, respectively. However, the actual free Zn2+ concentration in these buffers was the same at 8 μM. In both BSA- and gelatin-containing buffers and using two different chromogenic substrates for FXII, no autoactivation of FXII on HUVEC was seen when incubated for up to 60 min. Rather, initiation of FXII enzymatic activity required the presence of PK. FXII activation after PK activation contributed to the extent of measured enzymatic activity, but its role was secondary because treatment with corn trypsin inhibitor or a neutralizing antibody to FXIIa did not abolish the measured enzymatic activity. They also reduced the activity to the level seen with PK activation alone. Alternatively, soybean trypsin inhibitor abolished the proteolytic activity associated with PK and FXII activation on HUVEC. Further, only normal human and FXII-deficient plasmas, not PK-deficient plasma, had the ability to generate proteolytic activity when incubated over endothelial cells. In a purified system, maximal PK activation was measured after a 10-15 min incubation depending upon the concentration of reactants. When FXII was added with the PK, maximal activation occurred within 7.5-10 min. In normal human or FXII-deficient plasmas, but not in PK-deficient plasma, maximal activation was seen in 4 min. These data indicate that on HUVEC, unlike artificial surfaces, PK activation when bound to HK is the initiating activation event in this system. FXII activation is secondary to PK activation and contributes to the extent of measured enzymatic activity. These data challenge the accepted dogmas of “contact activation” and suggest that on biologic membranes a new notion as to how this system is activated needs to be considered.

Blood ◽  
2017 ◽  
Vol 129 (11) ◽  
pp. 1527-1537 ◽  
Author(s):  
Ivan Ivanov ◽  
Anton Matafonov ◽  
Mao-fu Sun ◽  
Qiufang Cheng ◽  
S. Kent Dickeson ◽  
...  

Key PointsThe single-chain form of FXII, a component of the plasma contact system, has proteolytic activity. Single-chain FXII activity suggests a mechanism of contact activation initiation when blood is exposed to physiologic/artificial surfaces.


Blood ◽  
2020 ◽  
Vol 135 (8) ◽  
pp. 558-567 ◽  
Author(s):  
Ivan Ivanov ◽  
Ingrid M. Verhamme ◽  
Mao-fu Sun ◽  
Bassem Mohammed ◽  
Qiufang Cheng ◽  
...  

Abstract Prekallikrein (PK) is the precursor of the trypsin-like plasma protease kallikrein (PKa), which cleaves kininogens to release bradykinin and converts the protease precursor factor XII (FXII) to the enzyme FXIIa. PK and FXII undergo reciprocal conversion to their active forms (PKa and FXIIa) by a process that is accelerated by a variety of biological and artificial surfaces. The surface-mediated process is referred to as contact activation. Previously, we showed that FXII expresses a low level of proteolytic activity (independently of FXIIa) that may initiate reciprocal activation with PK. The current study was undertaken to determine whether PK expresses similar activity. Recombinant PK that cannot be converted to PKa was prepared by replacing Arg371 with alanine at the activation cleavage site (PK-R371A, or single-chain PK). Despite being constrained to the single-chain precursor form, PK-R371A cleaves high-molecular-weight kininogen (HK) to release bradykinin with a catalytic efficiency ∼1500-fold lower than that of kallikrein cleavage of HK. In the presence of a surface, PK-R371A converts FXII to FXIIa with a specific activity ∼4 orders of magnitude lower than for PKa cleavage of FXII. These results support the notion that activity intrinsic to PK and FXII can initiate reciprocal activation of FXII and PK in solution or on a surface. The findings are consistent with the hypothesis that the putative zymogens of many trypsin-like proteases are actually active proteases, explaining their capacity to undergo processes such as autoactivation and to initiate enzyme cascades.


Blood ◽  
1982 ◽  
Vol 59 (1) ◽  
pp. 69-75 ◽  
Author(s):  
G Tans ◽  
JH Griffin

Abstract Incubation of normal human plasma with low amounts of sulfatides resulted in the initiation of intrinsic coagulation and the appearance of kallikrein activity. The optimal initiation of procoagulant and kallikrein amidolytic activity was dependent on the presence of factor XII, high molecular weight kininogen, and prekallikrein. Since the activated partial thromboplastin clotting times in prekallikrein- deficient plasma approach normal values upon prolonged incubation with kaolin, this phenomenon of autocorrection was studied and found to be even more pronounced in the presence of sulfatides. Autocorrection was essentially completed in 5 min in the presence of sulfatides, whereas a preincubation of 15–20 min was required in the presence of kaolin. The limited proteolysis of 125I-factor XII in plasma during incubation with activating material or during clotting was determined. Cleavage of factor XII was more rapid and more extensive in the presence of sulfatides than in the presence of kaolin. In prekallikrein-deficient plasma, factor XII cleavage was completed within 5 min in the presence of sulfatides and within 15 min in the presence of kaolin. Thus, the appearance of factor-XII-dependent coagulant activity correlates with the limited proteolysis of factor XII when normal or prekallikrein- deficient plasma is activated by sulfatides or kaolin.


2012 ◽  
Vol 108 (11) ◽  
pp. 863-871 ◽  
Author(s):  
Irma Geenen ◽  
Mark Post ◽  
Daniel Molin ◽  
Geert Schurink ◽  
Jos Maessen ◽  
...  

SummaryThe process of thrombin generation involves numerous plasma proteases and cofactors. Interaction with the vessel wall, in particular endothelial cells (ECs), influences this process but data on this interaction is limited. We evaluated thrombin generation on EA.hy926, human coronary arterial ECs (HCAECs) and patient-derived human venous ECs (HVECs) by means of a modified calibrated automated thrombogram (CAT) method and especially looked into contribution of the intrinsic and extrinsic pathways. Thrombin generation was measured in presence of confluent ECs with normal pooled and factor XII-deficient (FXII-deficient) platelet-poor plasma, with/without active site inhibited factor VIIa (ASIS) to block the extrinsic pathway and corn trypsin inhibitor for blocking contact activation (intrinsic pathway). Fetal bovine serum (FBS) was removed from culture conditions as FXIIa from the serum retained on ECs apparently, thereby inducing strong contact activation. In serum-free conditions, EA.hy926 and patient-derived HVECs induced thrombin generation mainly via the contact activation pathway with minor influence of ASIS on peak height and very low thrombin generation curves in FXII-deficient plasma. HVECs derived from coronary arterial bypass graft (CABG) patients showed increased thrombin generation compared to control patients, which could be ascribed to increased contact activation. Contribution of the extrinsic pathway on patient-derived ECs was limited. We conclude that the CAT method in combination with serum-free cultured ECs offers a valuable high-throughput method to evaluate endothelial influences on thrombin generation, which appears to involve predominantly contact activation on ECs. Contact activation-mediated thrombin generation was increased on ECs from CABG patients compared to controls.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1263-1268 ◽  
Author(s):  
H Saito ◽  
T Ishihara ◽  
H Suzuki ◽  
T Watanabe

Abstract A murine hybridoma cell line that produces a monoclonal antibody to human Hageman factor (HF, factor XII) is described. The antibody (P 5–2– 1) consists of mouse IgG2b heavy chains and lambda light chains, selectively neutralizes HF procoagulant activity, and prevents the proteolytic cleavage of HF during contact activation in plasma. When HF is exposed to P 5–2–1 before the absorption of HF to kaolin, HF procoagulant activity is markedly inhibited. In contrast, P 5–2–1 does not interfere with HF activity after the adsorption of HF to kaolin. P 5–2–1 does not inactivate the prekallikrein–activating activity of 28,000–mol wt HF fragments (HFf). P 5–2–1 binds exclusively to the 40,000mol wt portion of a heavy chain of HF and inhibits the adsorption of HF to negatively charged surfaces. P 5–2–1 immobilized on Sepharose can be used to deplete HF from normal human plasma. This immunoaffinity-depleted plasma is indistinguishable from congenital HF- deficient plasma and can be used as the substrate for HF procoagulant activity assay.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 42-50 ◽  
Author(s):  
CF Scott ◽  
D Sinha ◽  
FS Seaman ◽  
PN Walsh ◽  
RW Colman

Abstract The traditional coagulant assay for plasma factor XI suffers from a relatively high coefficient of variation, the need for rare congenitally deficient plasma, and a poor correlation between precision and sensitivity. We have developed a simple functional amidolytic assay for factor XI in plasma using the chromogenic substrate PyrGlu-Pro-Arg- p-nitroanilide (S-2366). After inactivation of alpha 1-antitrypsin, CI inhibitor, and other plasma protease inhibitors with CHCI3, plasma was incubated with kaolin, in the absence of added calcium, which limited the enzymes formed to those dependent on contact activation. Soybean trypsin inhibitor was used to minimize the action of kallikrein on the substrate. Once the reaction was complete, corn trypsin inhibitor was used to inactive factor XIIa, the enzyme generated by exposure of plasma to negatively charged surfaces, which had activated the factor XI. The assay is highly specific for factor XI, since plasma totally deficient in that zymogen yielded only 1%-3% of the enzymatic activity in normal plasma under identical conditions. The requirements for complete conversion of factor XI to XIa in plasma within 60 min were, respectively, factor XII, 0.6 U/ml, and high molecular weight kininogen, 0.2 U/ml. Prekallikrein was not an absolute requirement for complete activation but did accelerate the reaction. The intraassay coefficient of variation was 3.4%, and the mean of 35 normal plasmas was 1.00 U +/- 0.24 SD. In addition, a new rapid radioimmunoassay was devised using staphylococcal protein A as the precipitating agent for a complex of factor XI antigen with monospecific rabbit antibody. The mean was 1.01 U +/- 0.30 SD. The correlation coefficients for amidolytic versus coagulant and amidolytic versus radioimmunoassay were r = 0.95 for the former and 0.96 for the latter. Thus, a simple, accurate amidolytic assay and a radioimmunoassay have been devised for measuring factor XI in plasma that correlate well with the coagulant activity of factor XI, as determined in our laboratory.


2001 ◽  
Vol 85 (01) ◽  
pp. 119-124 ◽  
Author(s):  
Kusumam Joseph ◽  
Yoji Shibayama ◽  
Berhane Ghebrehiwet ◽  
Allen Kaplan

SummaryAlthough proteins of the kinin-forming pathway are bound along the surface of endothelial cells, the mechanism of activation of this proteolytic cascade is unclear. Endothelial cell surface proteins, gC1qR and cytokeratin 1, are capable of binding Factor XII and high molecular weight kininogen (HK) in a zinc-dependent reaction thus we considered the possibility that these proteins might catalyze initiation of the cascade. Incubation of Factor XII, prekallikrein, and HK with gC1qR or cytokeratin 1 leads to a zinc-dependent and Factor XII-dependent conversion of prekallikrein to kallikrein. We also demonstrate that normal plasma is capable of activating upon interaction with the cells whereas plasma deficient in Factor XII, prekallikrein and HK do not activate. Normal plasma activation was inhibitable by antibody to gC1qR and cytokeratin 1. Thus, gC1qR and cytokeratin 1, represent potential initiating surfaces for activation of the plasma kinin-forming cascade and may do so as a result of their expression along cell surfaces.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 516-528 ◽  
Author(s):  
Guacyara Motta ◽  
Rasmus Rojkjaer ◽  
Ahmed A.K. Hasan ◽  
Douglas B. Cines ◽  
Alvin H. Schmaier

The consequences of assembling the contact system of proteins on the surface of vascular cells has received little study. We asked whether assembly of these proteins on the surface of cultured human endothelial cells (HUVECs) results in the activation of prekallikrein (PK) and its dependent pathways. Biotinylated PK binds specifically and reversibly to HUVECs in the presence of high molecular weight kininogen (HK) (apparent Kd of 23 ± 11 nmol/L,Bmax of 1.7 ± 0.5 × 107 sites per cell [mean ± SD, n = 5 experiments]). Cell-associated PK is rapidly converted to kallikrein. Surprisingly, the activation of cell-associated HK•PK complexes is entirely independent of exogenous factor XII (Km = 30 nmol/L,Vmax = 12 ± 3 pmol/L/min in the absencevKm = 20 nmol/L,Vmax = 9.2 ± 2.1 pmol/L/min in the presence of factor XII). Rather, kallikrein formation is mediated by an endothelial cell-associated, thiol protease. Cell-associated HK is proteolyzed during the course of prekallikrein activation, releasing kallikrein from the surface. Furthermore, activation of PK bound to HK on HUVECs promotes kallikrein-dependent activation of pro-urokinase, resulting in the formation of plasmin. These results indicate the existence of a previously undescribed, factor XII-independent pathway for contact factor activation on HUVECs that regulates the production of bradykinin and may contribute to cell-associated plasminogen activation in vivo.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 42-50 ◽  
Author(s):  
CF Scott ◽  
D Sinha ◽  
FS Seaman ◽  
PN Walsh ◽  
RW Colman

The traditional coagulant assay for plasma factor XI suffers from a relatively high coefficient of variation, the need for rare congenitally deficient plasma, and a poor correlation between precision and sensitivity. We have developed a simple functional amidolytic assay for factor XI in plasma using the chromogenic substrate PyrGlu-Pro-Arg- p-nitroanilide (S-2366). After inactivation of alpha 1-antitrypsin, CI inhibitor, and other plasma protease inhibitors with CHCI3, plasma was incubated with kaolin, in the absence of added calcium, which limited the enzymes formed to those dependent on contact activation. Soybean trypsin inhibitor was used to minimize the action of kallikrein on the substrate. Once the reaction was complete, corn trypsin inhibitor was used to inactive factor XIIa, the enzyme generated by exposure of plasma to negatively charged surfaces, which had activated the factor XI. The assay is highly specific for factor XI, since plasma totally deficient in that zymogen yielded only 1%-3% of the enzymatic activity in normal plasma under identical conditions. The requirements for complete conversion of factor XI to XIa in plasma within 60 min were, respectively, factor XII, 0.6 U/ml, and high molecular weight kininogen, 0.2 U/ml. Prekallikrein was not an absolute requirement for complete activation but did accelerate the reaction. The intraassay coefficient of variation was 3.4%, and the mean of 35 normal plasmas was 1.00 U +/- 0.24 SD. In addition, a new rapid radioimmunoassay was devised using staphylococcal protein A as the precipitating agent for a complex of factor XI antigen with monospecific rabbit antibody. The mean was 1.01 U +/- 0.30 SD. The correlation coefficients for amidolytic versus coagulant and amidolytic versus radioimmunoassay were r = 0.95 for the former and 0.96 for the latter. Thus, a simple, accurate amidolytic assay and a radioimmunoassay have been devised for measuring factor XI in plasma that correlate well with the coagulant activity of factor XI, as determined in our laboratory.


2001 ◽  
Vol 86 (09) ◽  
pp. 840-847 ◽  
Author(s):  
Z. Shariat-Madar ◽  
F. Mahdi ◽  
C. A. M. Sampaio ◽  
A. H. Schmaier ◽  
G. Motta

SummaryInvestigations determined if extracellular matrix of endothelial cells (EC) is a platform for HK assembly and PK activation. In buffers containing bovine serum albumin, biotin-HK binding to ECV304 cells or their matrix requires ≥ 50 µM added Zn 2+. Ortho-phenanthroline or a HK domain 5 peptide blocks HK binding. Binding to umbilical vein EC or matrix, but not ECV304 cells or matrix, is mediated by cytokeratin 1. Biotin-HK binds to ECV304 cells or matrix with a Kd of 15.8 or 9.0 nM and a Bmax of 2.6 107 or 2.4 107 sites/cell, respectively. PK activation on ECV304 cells or matrix is blocked by antipain or SBTI and corn trypsin inhibitor partially inhibits kallikrein formation. PK activation occurs on ECV304 cells or matrix prepared without serum or in human factor XII deficient serum, indicating that the PK activator is not factor XIIa. EC matrix promotes plasminogen activation after the assembly of HK, PK and pro-urokinase. These studies indicate that matrix of various EC has the ability to assemble HK allowing for PK activation and subsequent activities.Abbreviations: EC: endothelial cells, FXII: factor XII, HK: high molecular weight kininogen, HKa: bradykinin-free HK, PK: plasma prekallikrein, Pro-UK: pro-urokinase, uPAR: urokinase plasminogen activator receptor, tcuPA: twochain urokinase, CK1: cytokeratin 1, SBTI: soybean trypsin inhibitor, HUVEC: human umbilical vein endothelial cell, SDS-PAGE: sodium dodecyl sulfatepolyacrylamide gel electrophoresis, CTI: corn trypsin inhibitor, p-APMSF: p-amidinophenylmethylsulfonylfluoride, EBSS: Earle’s Balanced Salt Solution


Sign in / Sign up

Export Citation Format

Share Document