scholarly journals Protease activity in single-chain prekallikrein

Blood ◽  
2020 ◽  
Vol 135 (8) ◽  
pp. 558-567 ◽  
Author(s):  
Ivan Ivanov ◽  
Ingrid M. Verhamme ◽  
Mao-fu Sun ◽  
Bassem Mohammed ◽  
Qiufang Cheng ◽  
...  

Abstract Prekallikrein (PK) is the precursor of the trypsin-like plasma protease kallikrein (PKa), which cleaves kininogens to release bradykinin and converts the protease precursor factor XII (FXII) to the enzyme FXIIa. PK and FXII undergo reciprocal conversion to their active forms (PKa and FXIIa) by a process that is accelerated by a variety of biological and artificial surfaces. The surface-mediated process is referred to as contact activation. Previously, we showed that FXII expresses a low level of proteolytic activity (independently of FXIIa) that may initiate reciprocal activation with PK. The current study was undertaken to determine whether PK expresses similar activity. Recombinant PK that cannot be converted to PKa was prepared by replacing Arg371 with alanine at the activation cleavage site (PK-R371A, or single-chain PK). Despite being constrained to the single-chain precursor form, PK-R371A cleaves high-molecular-weight kininogen (HK) to release bradykinin with a catalytic efficiency ∼1500-fold lower than that of kallikrein cleavage of HK. In the presence of a surface, PK-R371A converts FXII to FXIIa with a specific activity ∼4 orders of magnitude lower than for PKa cleavage of FXII. These results support the notion that activity intrinsic to PK and FXII can initiate reciprocal activation of FXII and PK in solution or on a surface. The findings are consistent with the hypothesis that the putative zymogens of many trypsin-like proteases are actually active proteases, explaining their capacity to undergo processes such as autoactivation and to initiate enzyme cascades.

Blood ◽  
2017 ◽  
Vol 129 (11) ◽  
pp. 1527-1537 ◽  
Author(s):  
Ivan Ivanov ◽  
Anton Matafonov ◽  
Mao-fu Sun ◽  
Qiufang Cheng ◽  
S. Kent Dickeson ◽  
...  

Key PointsThe single-chain form of FXII, a component of the plasma contact system, has proteolytic activity. Single-chain FXII activity suggests a mechanism of contact activation initiation when blood is exposed to physiologic/artificial surfaces.


1992 ◽  
Vol 67 (04) ◽  
pp. 440-444 ◽  
Author(s):  
Hiroko Tsuda ◽  
Toshiyuki Miyata ◽  
Sadaaki Iwanaga ◽  
Tetsuro Yamamoto

SummaryThe analysis of normal human plasma by fibrin autography revealed four species of plasminogen activator (PA) activity related to tissue-type PA, factor XII, prekallikrein and urokinase-type PA (u-PA). The u-PA activity increased significantly by incubating plasma with dextran sulfate. This increase was coincident with both the cleavage of factor XII and the complex formation of activated factor XII with its plasma inhibitors, which were determined by immunoblotting procedure. The dextran sulfate-dependent activation of u-PA required both factor XII and prekallikrein, but did not require either plasminogen or factor XI. High molecular weight kininogen was required only at a low concentration of dextran sulfate. Thus the results indicate that the factor XII and prekallikrein-mediated activation of single chain u-PA (scu-PA) operates as a major pathway of scu-PA activation in whole plasma in contact with dextran sulfate.


Blood ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 156-159 ◽  
Author(s):  
L Vroman ◽  
AL Adams ◽  
GC Fischer ◽  
PC Munoz

Abstract Using ellipsometry, anodized tantalum interference color, and Coomassie blue staining in conjunction with immunologic identification of proteins adsorbed at interfaces, we have previously found that fibrinogen is the main constituent deposited by plasma onto many man- made surfaces. However, the fibrinogen deposited from normal plasma onto glass and similar wettable materials is rapidly modified during contact activation until it can no longer be identified antigenically. In earlier publications, we have called this modification of the fibrinogen layer “conversion,” to indicate a process of unknown nature. Conversion of adsorbed fibrinogen by the plasma was not accompanied by marked change in film thickness, so that we presumed that this fibrinogen was not covered but replaced by other protein. Conversion is now showen to be markedly delayed in plasma lacking high molecular weight kininogen, slightly delayed in plasma lacking factor XII, and normal in plasma that lack factor XI or prekallikrein. We conclude that intact plasma will quickly replace the fibrinogen it has deposited on glass-like surfaces by high molecular weight kininogen and, to a smaller extent, by factor XII. Platelets adhere preferentially to fibrinogen-coated surfaces; human platelets adhere to hydrophobic nonactivating surfaces, since on these, adsorbed firbinogen is not exchanged by the plasma. The adsorbed fibrinogen will be replaced on glass-like surfaces during surface activation of clotting, and platelets failing to find fibrinogen will not adhere.


Blood ◽  
2019 ◽  
Vol 133 (10) ◽  
pp. 1152-1163 ◽  
Author(s):  
Ivan Ivanov ◽  
Anton Matafonov ◽  
Mao-fu Sun ◽  
Bassem M. Mohammed ◽  
Qiufang Cheng ◽  
...  

Abstract The plasma proteins factor XII (FXII) and prekallikrein (PK) undergo reciprocal activation to the proteases FXIIa and kallikrein by a process that is enhanced by surfaces (contact activation) and regulated by the serpin C1 inhibitor. Kallikrein cleaves high-molecular-weight kininogen (HK), releasing the vasoactive peptide bradykinin. Patients with hereditary angioedema (HAE) experience episodes of soft tissue swelling as a consequence of unregulated kallikrein activity or increased prekallikrein activation. Although most HAE cases are caused by reduced plasma C1-inhibitor activity, HAE has been linked to lysine/arginine substitutions for Thr309 in FXII (FXII-Lys/Arg309). Here, we show that FXII-Lys/Arg309 is susceptible to cleavage after residue 309 by coagulation proteases (thrombin and FXIa), resulting in generation of a truncated form of FXII (δFXII). The catalytic efficiency of δFXII activation by kallikrein is 15-fold greater than for full-length FXII. The enhanced rate of reciprocal activation of PK and δFXII in human plasma and in mice appears to overwhelm the normal inhibitory function of C1 inhibitor, leading to increased HK cleavage. In mice given human FXII-Lys/Arg309, induction of thrombin generation by infusion of tissue factor results in enhanced HK cleavage as a consequence of δFXII formation. The effects of δFXII in vitro and in vivo are reproduced when wild-type FXII is bound by an antibody to the FXII heavy chain (HC; 15H8). The results contribute to our understanding of the predisposition of patients carrying FXII-Lys/Arg309 to angioedema after trauma, and reveal a regulatory function for the FXII HC that normally limits PK activation in plasma.


1987 ◽  
Author(s):  
G Dooi jewaard ◽  
D J Binnema ◽  
C Kluft

For many years it is known that activation of the factor XII (FXII) -prekallikrein (PKK)- kininogen system of coagulation (contact activation) also may be involved in activation of fibrinolysis. Despite the numerous efforts over the past two decades to clarify this process, our current insights in this matter are far from complete. Also the physiological meaning of this possible interlinkage of coagulation and fibrinolysis is still uncertain; clearcut clinical manifestations in patients deficient in FXII or PKK are not found.No doubt, activation of fibrinolysis is a much more complicated process than it originally was thought to be, and it is only recently that the importance of urokinase for fibrinolysis in the circulation became clear. Two pathways of plasminogen (Pig) activation may be distinguished: 1. the extrinsic system, catalysed by t-PA, which upon stimulus is increasingly released from the endothelial cells of the vessel wall and 2. the intrinsic system, catalysed via Pig proactivators which circulate in the blood at a fairly constant level of concentration. The discovery that the virgin 55 kD urokinase molecule in fact is a single-chain proenzym (now denoted by scu-PA, single-chain urokinase-type PA), the notion that 55 kD scu-PA occurs in the blood and that its concentration even among individuals is fairly constant (2.1+/-0.4 ng/ml, n=52), and the observation that the efficacy of scu-PA is fibrin selective, all are recent findings pointing to the involvement of scu-PA in the intrinsic system.Still the relation between contact activation and the activation of scu-PA is obscure. Active KK, for instance, is an effective activator of 55 kD scu-PA, but proteolytic cleavage of scu-PA resulting in an active molecule, is readily achieved in plasma’s deficient in FXII or PKK. In addition, a portion of Pig activator activity which is dependent for its activation on FXII and PKK, is fully recovered in plasma’s artificially depleted in 55 kD scu-PA. Yet, both portions are activated by negatively charged surfaces or dextransulphate (DXS) as a substitute! These observations have led to the concept of two co-ordinative pathways of Pig activation for the intrinsic system: one containing scu-PA, the other containing FXII, PKK and a postulated Pig proactivator (note that the Pig activator activities of FXIIa and KK per se do not account for the latter portion of activity). Until recently in both pathways was a missing link: in the former it was the step between the negatively charged surface and scu-PA, in the latter it was the postulated Pig proactivator between active KK and Pig. This year, however, it became clear that in plasma artificially depleted in u-PA, still a substantial amount of protein immunochemically related to u-PA, can be detected (at least 35 ng/ml), but only after SDS PAGE. Part of this protein is a single-chain 110 kD molecule which in plasma can be converted to a cleaved molecule with Pig activator activity provided the plasma contains FXII and PKK. Although the relation with the 55 kD scu-PA remained unclear, the discovery of this 110 kD PA with latent urokinase antigen, undoubtedly, explains the missing link between KK and Pig. The other missing link still remains unexplained. It could be an in vitro artefact by DXS causing scu-PA catalysed activation of Pig as fibrin clots do. Since subsequently generated plasmin is capable of activation of both scu-PA and FXII, the two intrinsic pathways are thus interlinked via feed-back activation and consequently may be co-operative in function.


Blood ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 156-159 ◽  
Author(s):  
L Vroman ◽  
AL Adams ◽  
GC Fischer ◽  
PC Munoz

Using ellipsometry, anodized tantalum interference color, and Coomassie blue staining in conjunction with immunologic identification of proteins adsorbed at interfaces, we have previously found that fibrinogen is the main constituent deposited by plasma onto many man- made surfaces. However, the fibrinogen deposited from normal plasma onto glass and similar wettable materials is rapidly modified during contact activation until it can no longer be identified antigenically. In earlier publications, we have called this modification of the fibrinogen layer “conversion,” to indicate a process of unknown nature. Conversion of adsorbed fibrinogen by the plasma was not accompanied by marked change in film thickness, so that we presumed that this fibrinogen was not covered but replaced by other protein. Conversion is now showen to be markedly delayed in plasma lacking high molecular weight kininogen, slightly delayed in plasma lacking factor XII, and normal in plasma that lack factor XI or prekallikrein. We conclude that intact plasma will quickly replace the fibrinogen it has deposited on glass-like surfaces by high molecular weight kininogen and, to a smaller extent, by factor XII. Platelets adhere preferentially to fibrinogen-coated surfaces; human platelets adhere to hydrophobic nonactivating surfaces, since on these, adsorbed firbinogen is not exchanged by the plasma. The adsorbed fibrinogen will be replaced on glass-like surfaces during surface activation of clotting, and platelets failing to find fibrinogen will not adhere.


1987 ◽  
Author(s):  
D J Binnema ◽  
G Dooijewaard

Recently it has been shown that in human plasma two types of UK-related proteins occur: Type I, plasma UK, with UK-related antigenic determinants directly accessible to anti-UK antibodies and Type II with UK-related antigenic determinants which become accessible only after SDS treatment and separation of polypeptides on PAGE. In this study we compared the molecular and enzymic properties of the two types in: 1. plasma activated by dextran sulphate (DXS) euglobulin precipitation, 2. plasma that was not activated and 3. plasma deficient in F XII, depleted in PKK and subsequently activated by DXS. ACA 34 gel chromatography, SDS PAGE, fibrin underlay zymography and immunoblotting were used. Results:Conclusions: 1. The UK-related subunits of T1 and TII are active when cleaved, but relatively inactive in the single-chain form. 2. The presence of F XII and PKK is indispensable for activation of TII, but not for that of TI; TII contributes to the F Xll-de-pendent plasminogen activator activity reported earlier, TI to the F Xll-independent part. 3. Activation of TI by DXS with no F XII and PKK present impairs the formation of the 150,000 form. 4. The specific activity of TII is rather low, but its concentration in plasma (not shown) is at least ten times that of TI.


1987 ◽  
Author(s):  
J D Shore ◽  
D E Day ◽  
S T Olson

Previous work in our laboratory showed that Zn2+ enhanced the rate of kallikrein generation by dextran sulfate (DxSO4) in dialyzed normal plasma, but not in Fitzgerald or Hageman prismas. This could be partially explained by a marked effect of Zn2+ on factor XII autoactivation, and our present work involves zinc effects on other reactions of contact activation. At physiological ionic strength (0.15 μ), the kcat/Km for Xlla activation of prekallikrein (PK) was 0.62 μM™1 s™1 which was increased to 4.35 μM™1 s™1 by the presence of 25μg/ml DxSO4. High molecular weight kininogen (HMK) at 40 nM further increased this to 10.8 μM™1 s™1 , and 5 ¼M Zn2+ had no effect. To determine whether these cofactors promote a surface-dependent activation of PK by XIIa under conditions which weaken the protein-surface interactions, the kinetics were examined at 0.3μ. At this ionic strength, kcat/Km was 0.18 μM™1 s™1 and was unchanged by 25μg/ml DxSO4. This was increased to .805 μM™1 s™1 by 150 nM HMK and further increased 10-fold to 8.35 μM™1 s™1 by 10 μM™1 Zn2+ . Qualitative results were obtained at 0.3 μ for the other reciprocal reaction, XII activation by kallikrein (K). To observe XII activation within 2 hours, both 10 μM Zn2+ and 25 μM HMK were essential, indicating that these cofactors have a very large enhancing effect on the kinetics of this reaction. Chromatography of HMWK on DxSO4-agarose ^ljiowed elution of the protein at 0.42 M NaCl in the absence of Zn2+ ,but at 0.88M in its presence, providing evidence that Zn+ markedly increases the affinity of HMK for DxSO4. Our results are consistent with the increased activation rates observed in the presence of Zn2+ and HMK due to enhanced binding affinity of the reacting proteins to surfaces. This is likely to be essential for proper function of the contact system in blood, where many other proteins compete for surface. Supported by USPHS grant HL-25670


Sign in / Sign up

Export Citation Format

Share Document