In Vitro and in Vivo Comparison of Binding of 99m-Tc-Iabeled Anti-CEA MAb F33-104 with 99m-Tc-labeled Anti-CEA MAb BW431/26

1999 ◽  
Vol 38 (04) ◽  
pp. 115-119
Author(s):  
N. Oriuchi ◽  
S. Sugiyama ◽  
M. Kuroki ◽  
Y. Matsuoka ◽  
S. Tanada ◽  
...  

Summary Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tclabeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 107 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tcactivity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.

2009 ◽  
Vol 02 (04) ◽  
pp. 407-422 ◽  
Author(s):  
RALPH S. DACOSTA ◽  
YING TANG ◽  
TUULA KALLIOMAKI ◽  
RAYMOND M. REILLY ◽  
ROBERT WEERSINK ◽  
...  

Background and Aims: Accurate endoscopic detection of premalignant lesions and early cancers in the colon is essential for cure, since prognosis is closely related to lesion size and stage. Although it has great clinical potential, autofluorescence endoscopy has limited tumor-to-normal tissue image contrast for detecting small preneoplastic lesions. We have developed a molecularly specific, near-infrared fluorescent monoclonal antibody (CC49) bioconjugate which targets tumor-associated glycoprotein 72 (TAG72), as a contrast agent to improve fluorescence-based endoscopy of colon cancer. Methods: The fluorescent anti-TAG72 conjugate was evaluated in vitro and in vivo in athymic nude mice bearing human colon adenocarcinoma (LS174T) subcutaneous tumors. Autofluorescence, a fluorescent but irrelevant antibody and the free fluorescent dye served as controls. Fluorescent agents were injected intravenously, and in vivo whole body fluorescence imaging was performed at various time points to determine pharmacokinetics, followed by ex vivo tissue analysis by confocal fluorescence microscopy and histology. Results: Fluorescence microscopy and histology confirmed specific LS174T cell membrane targeting of labeled CC49 in vitro and ex vivo. In vivo fluorescence imaging demonstrated significant tumor-to-normal tissue contrast enhancement with labeled-CC49 at three hours post injection, with maximum contrast after 48 h. Accumulation of tumor fluorescence demonstrated that modification of CC49 antibodies did not alter their specific tumor-localizing properties, and was antibody-dependent since controls did not produce detectable tumor fluorescence. Conclusions: These results show proof-of-principle that our near-infrared fluorescent-antibody probe targeting a tumor-associated mucin detects colonic tumors at the molecular level in real time, and offer a basis for future improvement of image contrast during clinical fluorescence endoscopy.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 564
Author(s):  
Nayara Simas Frauches ◽  
Júlia Montenegro ◽  
Thuane Amaral ◽  
Joel Pimentel Abreu ◽  
Gabriela Laiber ◽  
...  

There is a significant indication of the beneficial health effects of fruit rich diets. Fruits of native plant species have noticeably different phytochemicals and bioactive effects. The aim of this work was to characterize and compare the constituents of jabuticaba (Myrciaria jaboticaba, MJ), jamun-berry (Syzygium cumini, SC), and malay-apple (Syzygium malaccense, SM) extracts and their influence on antioxidant activity in vitro and antiproliferative effects on human colon adenocarcinoma cells. According to the results, dried peel powders (DP) have a high anthocyanin content, phenolic compounds, and antioxidant activity when compared to freeze dried extracts (FD). M. jaboticaba dried peel powder extract had a higher total anthocyanin and phenolic compounds content (802.90 ± 1.93 and 2152.92 ± 43.95 mg/100 g, respectively). A reduction in cell viability of HT-29 cells after treatment with M. jaboticaba extracts (DP-MJ and FD-MJ) was observed via MTT assay. Flow cytometry showed that the treatment with the anthocyanin-rich extracts from MJ, SC, and SM had an inhibitory impact on cell development due to G2/M arrest and caused a rise in apoptotic cells in relation to the control group. The findings of this study highlight the potential of peel powders from Myrtaceae fruits as an important source of natural antioxidants and a protective effect against colon adenocarcinoma.


Author(s):  
Asish Bhaumik ◽  
Samaresh Datta ◽  
Susmita Datta ◽  
Radheshyam Samanta ◽  
B. D. Tripathi

The main aim and objective of the present research work was the isolation of some novel bioflavanoids from methanolic extract of peels of sweet lime (MEE-PSWL) and evaluation of in vitro anticancer activity followed by molecular docking against target protein topoisomerase II. The extraction was done by reflux condensation method and preliminary phytochemical screening of MEE-PSWL was carried out for the evaluation of bioactive molecules, the bioflavanoids present in MEE-PSWL was confirmed by spectral analysis such as ESI-MS-MS and FTIR. Molecular docking of isolated compounds was carried out against target protein Topoisomerase II with PDB id 1ZXM by Auto dock program and the best dock pose was selected based on the interaction study analysis. In vitro anticancer activity MEE-PSWL was evaluated by SRB assay toward human colon adenocarcinoma cell line SW620 and the test was carried out at different concentrations. A preliminary screening displayed that the MEE-PSWL was able to inhibit the proliferation of more than 60% of human colon adenocarcinoma SW620 cells. The maximum growth of inhibition was found to be at 125µg/ml (IC50 4.5µg/ml) and the standard drug doxorubicin was found to inhibit the maximum proliferation at concentration 75µg/ml (IC50 3µg/ml).


1983 ◽  
Vol 9 (8) ◽  
pp. 1209-1212 ◽  
Author(s):  
Ellen N. Spremulli ◽  
John T. Leith ◽  
Sarah F. Bliven ◽  
Debora E. Campbell ◽  
Daniel L. Dexter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document