The Adsorption of Blood Coagulation Factors II, VII, IX and X from Human Plasma to Aluminium Hydroxide

1972 ◽  
Vol 27 (03) ◽  
pp. 490-501 ◽  
Author(s):  
A. C. W Swart ◽  
B. H. M Klaassen ◽  
C. H. F Bloys-van Treslong-De Groot ◽  
H. C Hemker

SummaryThe influence of pH, adsorption time, ionic strength, buffer type and plasma concentration on adsorption and elution of the factors of the prothrombin complex from normal human ACD plasma onto A1(OH)3 is investigated. Reproducible small differences are found between the behaviour of the four factors II, VII, IX, and X.

1978 ◽  
Vol 40 (02) ◽  
pp. 532-541 ◽  
Author(s):  
Anders Lagrelius ◽  
Nils-Olov Lunell ◽  
Margareta Blombäck

SummaryThe aim of the present study was to investigate the effect on blood coagulation and fibrinolysis of a natural oestrogen preparation, piperazine oestrone sulphate, prospectively in menopausal women. Scopolamine was given to the control group.The women were investigated before and during treatment with regard to factors VIII, VII, X, V, fibrinopeptide A, antithrombin III, plasminogen, rapid antiplasmin and α1-antitrypsin. There was no significant change towards hypercoagulability or decreased fibrinolysis in any group. In the oestrogen group, however, a tendency towards an increased level of plasminogen and a decreased level of antiplasmin was demonstrated. In the scopolamine group there was an unexpected fall in factors X and V and also in plasminogen and α1,-antitrypsin. A low level of some blood coagulation factors in some of the women before treatment is somewhat astonishing; none of them had any history of excessive bleeding.


1967 ◽  
Vol 54 (1) ◽  
pp. 73-84 ◽  
Author(s):  
H. L. Krüskemper ◽  
G. Noell

ABSTRACT In male subjects investigations have been carried out regarding the effect of C1- and C17-methylated androstane derivatives (20 mg per day, orally, two weeks) on liver functions (parameters: activities of GPT, GOT, alkaline phosphatase and cholinesterase in serum; electrophoretic pattern; blood coagulation factors V, VII, X and prothrombin; BSP-retention). In addition to the well known hepatotropic action of 17α-alkylated C-19-steroids a quasi-axial 1α-methyl configuration (in 1α-methylandrost-2-en-17β-ol) definitely increased BSP-retention and several coagulation factors. These steroid effects decreased gradually when a methyl group was introduced in C1 equatorially (1-methylandrost-1-en-17β-ol-3-one) or quasi-equatorially (1β-methylandrost-2-en-17β-ol), the latter compound completely lacking from any influence on parameters of liver function under investigation.


1987 ◽  
Author(s):  
H J Hassan ◽  
A Leonardi ◽  
C Chelucci ◽  
R Guerriero ◽  
P M Mannucci ◽  
...  

We have analyzed the expression of several blood coagulation factors (IX, VIII, X, fibrinogen chains) and inhibitors (antithrombin III, protein C) in human embryonic and fetal livers, obtained from legal abortions at 6-11 week post-conception. The age was established by morphologic staging and particularly crown-rump lenght measurement.Total cellular RNA was isolated from partially purified hepatocytes or total liver homogenate using the guanidine isothiocyanate method. Poly(A)+ RNA was selected by oligodT cellulose chromatography. The size and the number of the embryonic and fetal transcripts are equivalent to those observed in adult liver, as evaluated by Northern blot analysis of total or poly(A)+ RNA hybridized to human cDNA probes.The level of coagulation factor transcripts in embryonic and fetal liver was evaluated by dot hybridization of total RNA (0.5-10 ug), as compared to RNA extracted from normal adult liver biopsies. The expression of blood coagulation factors in embryos is generally reduced for all factors, but at a different degree. In 5-11 wk liver, the level of factor IX is 5-10% of that observed in adults, while fibrinogen, protein C, antithrombin III RNA level rises from 25 to 50% and factor X is expressed at a level comparable to that observed in adult liver.We conclude that during these stages of development blood coagulation factors are expressed according to three different time, curves, possibly due to the effect of different types of regulatory mechanisms.


BMJ ◽  
1961 ◽  
Vol 1 (5242) ◽  
pp. 1831-1831
Author(s):  
F. Nour-Eldin

Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 500-507 ◽  
Author(s):  
RN Puri ◽  
F Zhou ◽  
CJ Hu ◽  
RF Colman ◽  
RW Colman

In this study we show that high molecular weight kininogen (HK) inhibited alpha-thrombin-induced aggregation of human platelets in a dose-dependent manner with complete inhibition occurring at plasma concentration (0.67 mumol/L) of HK. HK (0.67 mumol/L) also completely inhibited thrombin-induced cleavage of aggregin (Mr = 100 Kd), a surface membrane protein that mediates adenosine diphosphate (ADP)- induced shape change, aggregation, and fibrinogen binding. The inhibition of HK was specific for alpha- and gamma-thrombin-induced platelet aggregation, because HK did not inhibit platelet aggregation induced by ADP, collagen, calcium ionophore (A23187), phorbol myristate acetate (PMA), PMA + A23187, or 9,11-methano derivative of prostaglandin H2 (U46619). These effects were explained by the ability of HK, at physiologic concentration, to completely inhibit binding of 125I-alpha-thrombin to washed platelets. As a result of this action of HK, this plasma protein also completely inhibited thrombin-induced secretion of adenosine triphosphate, blocked intracellular rise in Ca2+ in platelets exposed to alpha- and gamma-thrombin, inhibited thrombin- induced platelet shape change, and blocked the ability of thrombin to antagonize the increase in intracellular cyclic adenosine monophosphate (cAMP) levels induced by iloprost. Because elevation of cAMP is known to inhibit binding of thrombin to platelets, we established that HK did not increase the intracellular concentration of platelet cAMP. Finally, HK did not inhibit enzymatic activity of thrombin. To study the role of HK in the plasma environment, we used gamma-thrombin to avoid fibrin formation by alpha-thrombin. Platelet aggregation induced by gamma- thrombin was also inhibited by HK in a dose-dependent manner. The EC50 (concentration to produce 50% of the maximum rate of aggregation) of gamma-thrombin for washed platelets was 7 nmol/L and increased to 102 nmol/L when platelets were suspended in normal human plasma. The EC50 for platelet aggregation induced by alpha-thrombin in plasma deficient in total kininogen was 40 nmol/L. When supplemented with HK at plasma concentration (0.67 mumol/L), the EC50 increased to 90 nmol/L, a value similar to that for normal human plasma. These results indicate that (1) HK inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets; (2) HK is a specific inhibitor of platelet aggregation induced by alpha- and gamma- thrombin; and (3) HK plays a role in modulating platelet aggregation stimulated by alpha-thrombin in plasma.


Sign in / Sign up

Export Citation Format

Share Document