Identification of Platelet Antigens by Monoclonal Antibodies Using Crossed Immunoelectrophoresis with Immunoblotting of the Monoclonal Antibody

1987 ◽  
Vol 57 (02) ◽  
pp. 212-216 ◽  
Author(s):  
L I Thorsen ◽  
G Gaudernack ◽  
F Brosstad ◽  
T M Pedersen ◽  
N O Solum

SummaryA method is described for the identification of antigens by monoclonal antibodies. This is applicable whenever precipitating antibodies to the same antigens from a different species are available. The method is based upon: 1) Separation and immunoprécipitation of cellular proteins with a polyspecific antiserum in crossed immunoelectrophoresis in the presence of the non-denaturing detergent Triton X-100 and the monoclonal antibody. 2) Coprecipitation of the monoclonal antibody with its antigen. 3) Subsequent passive transfer of the monoclonal antibody in the antibody-antigen complex onto a nitrocellulose membrane. 4) Visualization of the blotted antibody using an enzyme-linked secondary antibody and a chromogenic substrate. 5) Identification of the corresponding antigen by comparisons to the immunoprecipitate pattern of the original immunoplate. To test this method we have analyzed the detection of the antigens recognized by six previously described monoclonal antibodies against platelet membrane proteins and von Willebrand factor. Specific immunoblots were obtained in each case using small amounts of monoclonal antibodies. Thus, the technique provides an alternative when epitopes are denatured by SDS, and avoids the use of radioactively labelled monoclonal antibodies.

Blood ◽  
1985 ◽  
Vol 65 (2) ◽  
pp. 352-356 ◽  
Author(s):  
TJ Kunicki ◽  
RR Montgomery ◽  
J Schullek

Abstract In human platelet lysates prepared by addition of nonionic detergent (Triton X-100) or by sonication, the multimer composition and electrophoretic mobility of platelet von Willebrand factor (vWF) were consistently modified under conditions that would favor activation of the endogenous calcium-activated, sulfhydryl-dependent neutral protease (CAP). By sodium dodecylsulfate-agarose gel electrophoresis, native platelet vWF contained some multimers that were larger than those characteristic of plasma vWF. Modified platelet vWF contained a multimer population equivalent to or smaller than that of plasma vWF plus an additional fast-migrating band. In crossed immunoelectrophoresis (CIE), modified platelet vWF was characterized by a more anodic distribution and the appearance of a distinct, cross- reactive, anodic component previously designated VIIIR:Ag fragment. In the presence of calcium, radiolabeled purified plasma vWF was also degraded by the protease in question, with a decrease in the apparent molecular weight of the reduced monomer from 230,000 to 205,000. The VIIR:Ag fragment isolated from the same degraded plasma vWF by preparative CIE was shown to be composed of an identical mol wt 205,000 subunit. Because cleavage of plasma or platelet vWF was inhibited by prior addition of leupeptin, EDTA, ethylene glycol bis (beta-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA), or N-ethylmaleimide (agents known to inhibit platelet CAP) but was unaffected by numerous other protease inhibitors, including soybean trypsin inhibitor, benzamidine, hirudin, phenylmethylsulfonyl fluoride, aprotonin, or epsilon-aminocaproic acid (none of which inhibits platelet CAP), we conclude that proteolysis of vWF observed in this study is a direct effect of CAP and is not mediated by way of secondary proteases.


Blood ◽  
1985 ◽  
Vol 65 (2) ◽  
pp. 352-356
Author(s):  
TJ Kunicki ◽  
RR Montgomery ◽  
J Schullek

In human platelet lysates prepared by addition of nonionic detergent (Triton X-100) or by sonication, the multimer composition and electrophoretic mobility of platelet von Willebrand factor (vWF) were consistently modified under conditions that would favor activation of the endogenous calcium-activated, sulfhydryl-dependent neutral protease (CAP). By sodium dodecylsulfate-agarose gel electrophoresis, native platelet vWF contained some multimers that were larger than those characteristic of plasma vWF. Modified platelet vWF contained a multimer population equivalent to or smaller than that of plasma vWF plus an additional fast-migrating band. In crossed immunoelectrophoresis (CIE), modified platelet vWF was characterized by a more anodic distribution and the appearance of a distinct, cross- reactive, anodic component previously designated VIIIR:Ag fragment. In the presence of calcium, radiolabeled purified plasma vWF was also degraded by the protease in question, with a decrease in the apparent molecular weight of the reduced monomer from 230,000 to 205,000. The VIIR:Ag fragment isolated from the same degraded plasma vWF by preparative CIE was shown to be composed of an identical mol wt 205,000 subunit. Because cleavage of plasma or platelet vWF was inhibited by prior addition of leupeptin, EDTA, ethylene glycol bis (beta-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA), or N-ethylmaleimide (agents known to inhibit platelet CAP) but was unaffected by numerous other protease inhibitors, including soybean trypsin inhibitor, benzamidine, hirudin, phenylmethylsulfonyl fluoride, aprotonin, or epsilon-aminocaproic acid (none of which inhibits platelet CAP), we conclude that proteolysis of vWF observed in this study is a direct effect of CAP and is not mediated by way of secondary proteases.


1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


1993 ◽  
Vol 69 (03) ◽  
pp. 240-246 ◽  
Author(s):  
Midori Shima ◽  
Dorothea Scandella ◽  
Akira Yoshioka ◽  
Hiroaki Nakai ◽  
Ichiro Tanaka ◽  
...  

SummaryA neutralizing monoclonal antibody, NMC-VIII/5, recognizing the 72 kDa thrombin-proteolytic fragment of factor VIII light chain was obtained. Binding of the antibody to immobilized factor VIII (FVIII) was completely blocked by a light chain-specific human alloantibody, TK, which inhibits FVIII activity. Immunoblotting analysis with a panel of recombinant protein fragments of the C2 domain deleted from the amino-terminal or the carboxy-terminal ends demonstrated binding of NMC-VIII/5 to an epitope located between amino acid residues 2170 and 2327. On the other hand, the epitope of the inhibitor alloantibody, TK, was localized to 64 amino acid residues from 2248 to 2312 using the same recombinant fragments. NMC-VIII/5 and TK inhibited FVIII binding to immobilized von Willebrand factor (vWF). The IC50 of NMC-VIII/5 for the inhibition of binding to vWF was 0.23 μg/ml for IgG and 0.2 μg/ml for F(ab)'2. This concentration was 100-fold lower than that of a monoclonal antibody NMC-VIII/10 which recognizes the amino acid residues 1675 to 1684 within the amino-terminal portion of the light chain. The IC50 of TK was 11 μg/ml by IgG and 6.3 μg/ml by F(ab)'2. Furthermore, NMC-VIII/5 and TK also inhibited FVIII binding to immobilized phosphatidylserine. The IC50 for inhibition of phospholipid binding of NMC-VIII/5 and TK (anti-FVIII inhibitor titer of 300 Bethesda units/mg of IgG) was 10 μg/ml.


1992 ◽  
Vol 284 (3) ◽  
pp. 711-715 ◽  
Author(s):  
G Piétu ◽  
A S Ribba ◽  
G Chérel ◽  
D Meyer

In order to study the structure-function relationship of von Willebrand Factor (vWF), we have located the epitope of a well-characterized monoclonal antibody (MAb) to vWF (MAb 9). This MAb reacts with the C-terminal portion of the vWF subunit, SPII fragment [amino acids (aa) 1366-2050], which includes an Arg-Gly-Asp (RGD) sequence at positions 1744-1746, and totally inhibits vWF and SPII binding to platelet membrane glycoprotein IIb/IIIa (GPIIb/IIIa). A recombinant DNA library was constructed by cloning small (250-500 nucleotides) vWF cDNA fragments into the lambda gt11 vector and these inserts were expressed as fusion proteins with beta-galactosidase. Immunological screening of the library with 125I-MAb 9 identified three immunoreactive clones. vWF inserts were amplified by the PCR and their sequences demonstrated overlapping nucleotides from positions 7630 to 7855 of vWF cDNA, coding for aa residues 1698-1773 of the mature subunit, indicating that this is the epitope of MAb 9. vWF-beta-galactosidase fusion protein reacted with 125I-MAb 9 by Western blotting. In a solid-phase radioimmunoassay, the purified fusion proteins decreased the binding of vWF to 125I-MAb 9 by 50%, and this inhibition was dose-dependent between 3.5 and 120 nM. Therefore the epitope of MAb 9 is located within aa 1698-1773 of the vWF subunit, which includes the RGD sequence implicated in the binding of adhesive proteins of GPIIb/IIIa.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 797-800 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
BS Coller

Two monoclonal antibodies--one that blocks ristocetin-induced platelet binding of von Willebrand factor to glycoprotein Ib and one that blocks adenosine diphosphate-induced binding of fibrinogen to the glycoprotein IIb/IIIa complex--were used to assess the binding site(s) for von Willebrand factor when platelets are stimulated with thrombin or adenosine diphosphate (ADP). Neither agonist induced binding of von Willebrand factor to glycoprotein Ib. ADP and thrombin induced von Willebrand factor binding exclusively to the glycoprotein IIb/IIIa complex. The results of the site of binding of von Willebrand factor with thrombasthenic platelets were consistent with the data obtained with the monoclonal antibodies and normal platelets. Human fibrinogen caused complete inhibition of thrombin-induced von Willebrand factor binding to normal platelets at concentrations considerably below that found in normal plasma. We conclude that thrombin induces very little binding of exogenous von Willebrand factor to platelets at normal plasma fibrinogen levels.


Sign in / Sign up

Export Citation Format

Share Document