Synergism Between Platelet Aggregating Agents: Possible Trigger Mechanisms During Hemostatic Plug And/Or Thrombus Formation

1981 ◽  
Author(s):  
S C Wong ◽  
G A Rock

number of in-vitro studies have shown that various pair-combinations of aggregating agents such as ADP, epinephrine, collagen, thrombin, arachidonate and ionophore A 23187 can produce synergistic responses to induce platelet aggregation and release reactions. We have also produced synergistic effects by combining much lower doses of 3 or more aggregating agents and found markedly enhanced responses. It appears that the potential for synergistic effects is based both on the combination of the various agents and on the amount of each agent used for stimulation. Epinephrine is the most potent agent among them, although fibrinogen and Ca++ play a very important role. Indomethacin, ASA, PGE 1, and synthetic serine protease inhibitors (carboxylate and sulphonate analog) completely inhibit the platelet aggregation and release response. Of particular interest is the fact that addition of as little as 0.04% of the usual aggregating dose of epinephrine in the presence of 4% of collagen, 2% of thrombin and 10% of the normal plasma level of fibrinogen will initiate a marked response both of platelet aggregation and ATP release. This suggests a possible mechanism whereby acute insults such as stress or exercise, with release of epinephrine, can precipitate a thrombotic event in a patient who has normal or near-normal circulating levels of fibrinogen but who also has exposure of a very limited amount of the vascular endothelium (thereby exposing collagen). Since the effects of the acute insults of epinephrine secretion can be blocked by the presence of indomethacin, ASA, PGE 1 and specific serine protease inhibitors, prostaglandin synthesis must play a major role in this reaction.

2011 ◽  
Vol 49 (10) ◽  
pp. 1191-1200 ◽  
Author(s):  
Laura Carrillo ◽  
Ignacio Herrero ◽  
Inés Cambra ◽  
Rosa Sánchez-Monge ◽  
Isabel Diaz ◽  
...  

1990 ◽  
Vol 20 (4) ◽  
pp. 229-232
Author(s):  
J. Kłoczko ◽  
M. Bielawiec ◽  
J. Giedrojć ◽  
P. Radziwon ◽  
M. Galar

1987 ◽  
Vol 18 (3) ◽  
pp. 229-231
Author(s):  
Keiko HODOHARA ◽  
Yoshihide FUJIYAMA ◽  
Shiro HOSODA ◽  
Kohjiro YASUNAGA

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1185-1185
Author(s):  
Melissa van Pel ◽  
Ronald van Os ◽  
Gerjo A. Velders ◽  
Henny Hagoort ◽  
Ivan J. Lindley ◽  
...  

Abstract Previously, we have shown that IL-8 and G-CSF-induced hematopoietic stem cell (HSC) mobilization is inhibited in mice that underwent low dose (0.5 Gy) total body irradiation (TBI), whereas the number of progenitor cells in the bone marrow remained similar in all groups. The mechanism underlying this inhibition remains unknown. Since the release of granular proteases by neutrophils is well known to play a role in HSC mobilization, we also considered a possible role for serine protease inhibitors in the induction of HSC mobilization. Serine proteases, such as elastase and cathepsin G, are irreversibly inhibited by serine protease inhibitors including alpha-1 antitrypsin (alpha-1 AT) and alpha2-macroglobulin. In-vitro tests revealed that addition of bone marrow extracellular extracts, that were obtained from murine femurs 24 hours following low dose (0.5 Gy) TBI, inhibited the activity of exogenous elastase in a chromogenic substrate conversion assay up to 78.1 % compared to extracts obtained from sham irradiated controls (p<0.05). Since elastase inhibition by alpha2-macroglobulin cannot be detected in a chromogenic substrate conversion assay, alpha-1 AT was considered as the primary candidate serine protease inhibitor to inhibit elastase activity in our in-vitro system. Quantitative PCR of total bone marrow cells revealed that alpha-1 AT mRNA was 20-fold increased relative to the housekeeping gene ß-actin and 7-fold relative to the housekeeping genes HPRT and GAPDH at 24 hours following low dose (0.5 Gy) TBI. In addition, Western blot analysis indicated that alpha-1 AT protein concentrations were significantly (p<0.01) increased in bone marrow extracellular extracts derived from low dose (0.5 Gy) irradiated mice, compared to extracts obtained from sham-irradiated controls (5.1 ± 0.6 scanning units [SU] vs. 3.9 ± 0.7 SU for 0.5 Gy;n=8 vs. 0 Gy; n=6 respectively). To further substantiate a possible in-vivo role of alpha-1 AT in the inhibition of HSC mobilization, we administered alpha-1 AT (300 μg/mouse i.p.) at 2 hours and at 5 minutes prior to IL-8 injection (30 μg/mouse i.p.). Administration of alpha-1 AT prior to IL-8 injection completely (p<0.05) inhibited IL-8-induced HSC mobilization (472.9 ± 289.5 CFU-GM per ml blood for IL-8; n=5 vs. 44.8 ± 35.5 CFU-GM per ml blood for alpha-1 AT/IL-8; n =11). These results indicate that 1) alpha-1 AT is a potent inhibitor of IL-8-induced HSC mobilization and 2) in-vivo induced alpha-1 AT contributes to the inhibition of HSC mobilization after low-dose (0.5 Gy) TBI. We hypothesize that a critical balance between serine proteases and serine protease inhibitors plays an important role in cytokine-induced HSC mobilization.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Nana Yi ◽  
Pengcheng Yu ◽  
Lijia Wu ◽  
Zhaokun Liu ◽  
Jingzhe Guan ◽  
...  

AbstractTrichinella spiralis serpin-type serine protease inhibitors (TsSPIs) are expressed in adult worms (AW), newborn larvae (NBL) and muscle larvae (ML) of T. spiralis, with the ML stage demonstrating the highest expression level. This study aims to determine TsSPI functions in larval viability and invasion of intestinal epithelial cells in vitro, as well as their development, survival, and fecundity in vivo via RNAi. TsSPI-specific siRNAs and dsRNA were transfected into ML by incubation. The silencing effect of TsSPI transcription and expression was determined using qPCR and western blot, respectively. After incubation in 60 ng/μL dsRNA–TsSPI for 3 days, larval TsSPI mRNA and protein expression levels were reduced by 68.7% and 68.4% (P < 0.05), respectively. dsRNA-mediated silencing of TsSPI significantly impacted larval invasion into intestinal epithelial cells in vitro but did not affect the survival rate of larvae. After challenge with dsRNA–TsSPI-treated ML, mice exhibited a 56.0% reduction in intestinal AW burden and 56.9% reduction in ML burden (P < 0.05), but NBL production of female AW remained the same (P > 0.05). Our results revealed that RNAi-mediated silencing of TsSPI expression in T. spiralis significantly reduced larval infectivity and survival in the host but had no effect on the survival rate and fecundity. Furthermore, TsSPIs have no effect on the growth and reproduction of parasites but may be directly involved in regulating the interaction of T. spiralis and the host. Therefore, TsSPIs are crucial in the process of T. spiralis larval invasion and parasite survival in the host.


2003 ◽  
Vol 92 (1-2) ◽  
pp. 27-38 ◽  
Author(s):  
Nathalie Poulain ◽  
Isabelle Dez ◽  
Cecile Perrio ◽  
Marie-Claire Lasne ◽  
Marie-Pascale Prud’homme ◽  
...  

Haematologia ◽  
2002 ◽  
Vol 32 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Mitsuteru Yamamoto ◽  
Shunichi Kumagai ◽  
Ryukichi Ryo ◽  
Osamu Horie ◽  
Noriko Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document