Utility of Diffusion Tensor Imaging Tractography in Evaluating Motor Examination and Functional Outcomes in Patients with Surgically Resected Deep Intracranial Cavernous Malformations: A Preliminary Model

2019 ◽  
Author(s):  
Kumar Abhinav ◽  
Troels Nielsen ◽  
Rhea Singh ◽  
Yingjie Weng ◽  
Summer Han ◽  
...  
Author(s):  
Shawn D’Souza ◽  
Lisa Hirt ◽  
David R Ormond ◽  
John A Thompson

Abstract Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.


2017 ◽  
Vol 34 ◽  
pp. 96-98 ◽  
Author(s):  
M. Puligheddu ◽  
I. Laccu ◽  
G. Gioi ◽  
P. Congiu ◽  
M. Figorilli ◽  
...  

2006 ◽  
Vol 2 ◽  
pp. S686-S686
Author(s):  
Stephen Correia ◽  
Stephanie Y. Lee ◽  
Song Zhang ◽  
Stephen P. Salloway ◽  
Paul F. Malloy ◽  
...  

2018 ◽  
Vol 44 (6) ◽  
pp. E3 ◽  
Author(s):  
Kazunori Oda ◽  
Fumio Yamaguchi ◽  
Hiroyuki Enomoto ◽  
Tadashi Higuchi ◽  
Akio Morita

OBJECTIVEPrevious studies have suggested a correlation between interhemispheric sensorimotor networks and recovery from supplementary motor area (SMA) syndrome. In the present study, the authors examined the hypothesis that interhemispheric connectivity of the primary motor cortex in one hemisphere with the contralateral SMA may be important in the recovery from SMA syndrome. Further, they posited that motor cortical fiber connectivity with the SMA is related to the severity of SMA syndrome.METHODSPatients referred to the authors’ neurological surgery department were retrospectively analyzed for this study. All patients with tumors involving the unilateral SMA region, without involvement of the primary motor area, and diagnosed with SMA syndrome in the postoperative period were eligible for inclusion. Preoperative diffusion tensor imaging tractography (DTT) was used to examine the number of fiber tracts (NFidx) connecting the contralateral SMA to the ipsilateral primary motor area via the corpus callosum. Complete neurological examination had been performed in all patients in the pre- and postoperative periods. All patients were divided into two groups: those who recovered from SMA syndrome in ≤ 7 days (early recovery group) and those who recovered in ≥ 8 days (late recovery group). Differences between the two groups were assessed using the Student t-test and the chi-square test.RESULTSEleven patients (10 men, 1 woman) were included in the study. All patients showed transient postoperative motor deficits because of SMA syndrome. Tractography data revealed NFidx from the contralateral SMA to the ipsilateral primary motor area via the corpus callosum. The mean tumor volume (early 27.87 vs late 50.91 cm3, p = 0.028) and mean NFidx (early 8923.16 vs late 4726.4, p = 0.002) were significantly different between the two groups. Fisher exact test showed a significant difference in the days of recovery from SMA syndrome between patients with an NFidx > 8000 and those with an NFidx < 8000.CONCLUSIONSDiffusion tensor imaging tractography may be useful for predicting the speed of recovery from SMA syndrome. To the authors’ knowledge, this is the first DTT study to identify interhemispheric connectivity of the SMA in patients with brain tumors.


Sign in / Sign up

Export Citation Format

Share Document