scholarly journals Characterization of the Binding of Adenosine Diphosphate to Human Platelet Membranes

1977 ◽  
Author(s):  
C. Legrand ◽  
B. Bauvois ◽  
J. P. Caen

ADP-mediated platelet aggregation is a routinely employed test but its mechanism is poorly understood. The aim of this study was to compare the binding of ADP to plasma membranes isolated from normal platelets and thrombasthenic platelets (which do not aggregate with ADP). Binding of ADP to isolated membranes was assayed by incubation with 14C-ADP followed by Mill i pore filtration. In standard conditions, 14C-ADP was not transformed and non specific binding represented lessthan 3 % of the total binding. Using 1 μM 14C-ADP, the binding has been shown to be a rapid (t 1/2 = 2 mn 30 sec), saturable and reversible phenomenon at 37° C. The existence of a major population of binding sites, with an affinity constant Ka = 0.43 (+ 0.1) χ 106M-1, has been demonstrated. The kinetics of the binding was normal with membranes Tsolated from the platelets of 4 thrombasthenic patients and the affinity constant, when determined, was in the normal range. Dissociation of the membrane-bound 14C-ADP occurred rapidly at 37° C (t l/2c≃3mn) when samples were diluted enough (dilution 1 : 100 was currently employed) to avoid rebinding of the radioligand. Accelerated dissociation (t 1/2 ≃ 1 mn) was observed when the dilution was performed in the presence of an excess of unlabeled ADP, suggesting the existence of negatively cooperative site-site interactions among the ADP binding sites. This effect was only observed at high concentrations of ADP (> 10–5M) and its eventual role in vivo remains to be established. Two thrombasthenic membrane preparations studied in the same way dissociated as did the control membranes.

2015 ◽  
Vol 11 (9) ◽  
pp. 2579-2587 ◽  
Author(s):  
Huy Tran ◽  
Samuel M. D. Oliveira ◽  
Nadia Goncalves ◽  
Andre S. Ribeiro

Characterization of the cellular intake kinetics of a lactose analogue fromin vivosingle-event measurements of transcription activity.


1986 ◽  
Vol 240 (2) ◽  
pp. 367-371 ◽  
Author(s):  
S Keppens ◽  
H De Wulf

Evidence has been presented for the existence in rat liver of P2-purinoceptors which are involved in the control of glycogenolysis. Isolated rat hepatocytes and purified liver plasma membranes have been used to study the binding of the ATP analogue adenosine 5′-[alpha- [35S]thio]triphosphate (ATP alpha [35S]) to these postulated P2-purinoceptors. The nucleotide analogue behaves as a full agonist for the activation of glycogen phosphorylase in isolated hepatocytes, 0.3 microM being required for half-maximal activation. Specific binding of ATP alpha [35S] to hepatocytes and plasma membranes occurs within 1 min and is essentially reversible. The analysis of the dose-dependency at equilibrium indicates the presence of binding sites with Kd of 0.23 microM with hepatocytes and Kd of 0.11 microM with plasma membranes. The relative affinities of 10 nucleotide analogues were deduced from competition experiments for ATP alpha [35S] binding to hepatocytes, and these correlated highly with their biological activity (activation of glycogen phosphorylase in hepatocytes). For all the agonists, binding occurs in the same concentration range as the biological effect. These data clearly suggest that the detected binding sites correspond to the physiological P2-purinoceptors involved in the regulation of liver glycogenolysis. The rank order of potency of some ATP analogues suggests that liver possesses the P2Y-subclass of P2-purinoceptors.


1995 ◽  
Vol 311 (3) ◽  
pp. 1009-1014 ◽  
Author(s):  
W R Shieh ◽  
C S Chen

Antibodies against Ins(1,4,5)P3 were raised by immunizing rabbits with two types of InsP3-BSA conjugates which were synthesized by covalently coupling Ins(1,4,5)P3 to the carrier protein via alkyl linkages. The anti-Ins(1,4,5)P3 antibody was detected by a novel ELISA using Ins(1,4,5)P3-immobilized microtitre plates. Both antiserum preparations showed specific binding with Ins(1,4,5)P3, with titres of 1:4000. Most inositol phosphates, including Ins1P, Ins(4,5)P2, Ins(1,3,4)P3, Ins(1,5,6)P3, Ins(1,2,5,6)P1, Ins(3,4,5,6)P4, Ins(1,3,4,5,6)P5, InsP6, and PtdIns(4,5)P2, did not exhibit significant molecular interactions with the antibodies. Ins(1,3,4,5)P4, however, cross-reacted with these antibodies with one-third of the affinity as that of Ins(1,4,5)P3, in part due to the largely shared structural motifs. The differential affinity was significantly improved by affinity purification on Ins(1,4,5)P3-agarose. The affinity-purified antibody displayed IC50 values of 12 nM and 730 nM for Ins(1,4,5)P3 and Ins(1,3,4,5)P4 respectively, according to a competitive ELISA; these values are in line with those reported for the Ins(1,4,5)P3 receptor. The modes of ligand recognition at the binding sites of these two types of biomolecules are, however, different. Moreover, although the ligand binding was interfered with by multivalent anions such as ATP4-, HPO4(3-) and SO4(2-) at high concentrations, no inhibition was noted with heparin, an antagonist of the Ins(1,4,5)P3 receptor.


1995 ◽  
Vol 41 (2) ◽  
pp. 28-30
Author(s):  
T. S. Saatov ◽  
F. Ya. Gulyamova ◽  
G. U. Usmanova

Besides intracellular receptors of thyroid hormones, specific binding sites for T3 and T4 were detected on plasma membranes (PM) of some cells and a relationship between membrane reception .and lipid composition of membranes shown. The parameters of 125I-T4 binding to highly purified PM of hepatic and cerebral cells of rats were studied. The hepatic and cerebral cellular membranes were found to contain two sites of hormone binding each, one of these sites being characterized by a high affinity and low capacity, and the other by low affinity and a higher binding capacity. The association constant of highly affine site of hepatocyte membranes was found to be higher than that of brain cell membranes. T4 membranous receptors may be significant in the process of cell “recognition" by the hormone. In vivo and in vitro experiments with 125I-T4 and 14C-labeled thyroxin in ganglioside fractions showed appreciable binding of the hormone to Gm3 fraction, this evidently pointing to participation of this, ganglioside in T4 interaction with membrane receptor. It is possible that gangliosides situated on membranous surface are components of or function as receptors.


2001 ◽  
Vol 12 (9) ◽  
pp. 2825-2834 ◽  
Author(s):  
Hanan Osman ◽  
Sébastien Vauthrin ◽  
Vladimir Mikes ◽  
Marie-Louise Milat ◽  
Franck Panabières ◽  
...  

Elicitins secreted by phytopathogenic Phytophthoraspp. are proteinaceous elicitors of plant defense mechanisms and were demonstrated to load, carry, and transfer sterols between membranes. The link between elicitor and sterol-loading properties was assessed with the use of site-directed mutagenesis of the 47 and 87 cryptogein tyrosine residues, postulated to be involved in sterol binding. Mutated cryptogeins were tested for their ability to load sterols, bind to plasma membrane putative receptors, and trigger biological responses. For each mutated elicitin, the chemical characterization of the corresponding complexes with stigmasterol (1:1 stoichiometry) demonstrated their full functionality. However, these proteins were strongly altered in their sterol-loading efficiency, specific binding to high-affinity sites, and activities on tobacco cells. Ligand replacement experiments strongly suggest that the formation of a sterol-elicitin complex is a requisite step before elicitins fasten to specific binding sites. This was confirmed with the use of two sterol-preloaded elicitins. Both more rapidly displaced labeled cryptogein from its specific binding sites than the unloaded proteins. Moreover, the binding kinetics of elicitins are related to their biological effects, which constitutes the first evidence that binding sites could be the biological receptors. The first event involved in elicitin-mediated cell responses is proposed to be the protein loading with a sterol molecule.


1968 ◽  
Vol 46 (12) ◽  
pp. 1443-1450 ◽  
Author(s):  
Y. C. Choi ◽  
E. R. M. Kay

The uptake of protein by cells of the Ehrlich–Lettré ascites carcinoma was characterized kinetically by using hemoglobin as a model protein. An attempt was made to show that the process is not an artefact due to nonspecific adsorption of protein to the cell membrane. The kinetics of the uptake process suggested that an interaction exists between the exogenous protein and specific binding sites on the membrane. Acetylation of hemoglobin enhanced the rate of uptake of this protein. Treatment of cells with neuraminidase, phospholipase A, and Pronase resulted in an inhibition of protein uptake. The experimental evidence for the uptake of hemoglobin was supported by evidence that L-serine-U-14C-labelled hemoglobin is transported into the cytoplasm and utilized subsequently, resulting in labelling of the nucleic acid nucleotides.


Sign in / Sign up

Export Citation Format

Share Document