Characteristics of Platelet Protransglutaminase (Factor XIII)-Binding Activity in Human Plasma

1975 ◽  
Author(s):  
D. Bannerjee ◽  
M. W. Mosesson

Human plasma Factor XIII (F. XIII) complex is composed of two types of noncovalently linked polypeptide chains termed a and b; only the a chain possesses catalytic potential. Platelet Factor XIII is comprised solely of a chains which are identical to those found in plasma. In this study platelets were utilized as a source of unbound a chains to characterize F. XIII (a chain)-binding activity in plasma and its subfractions. Upon exclusion chromatography of unheated plasma or of an unheated ammonium sulfate (20% sat.) subfraction, F. XIII activity emerged in a peak corresponding to a mol. wt. of < 500,000 (region 1). If these samples had first been heated at 60° to precipitate fibrinogen, F. XIII was eluted in a peak corresponding to a mol wt. of about 300,000 (region 2). Chromatography of the platelet zymogen alone resulted in a F. XIII peak corresponding in position to that of monomeric a chain (mol. wt. 80,000, region 3).Exclusion chromatography of the unheated ammonium sulfate fraction yielded, in addition to the F. XIII peak in region 1, a protein peak (peak II) in region 2 which contained no F. XIII. When peak II was mixed with platelet F. XIII, and again subjected to exclusion chromatography, the platelet F. XIII peak shifted from its expected position in region 3 and emerged instead in region 2 ; this behavior demonstrated F. XIII (a chain)-binding activity within peak II. The same chromatographic shift was observed in mixtures of platelet F. XIII and normal plasma or that from a patient with congenital F. XIII (a chain) deficiency. Immunochemical analyses of chromatographic fractions indicated that a chain-binding was due to complexing of a chains with freely circulating b chains. Since a chains and b chains have different biosynthetic sites we conclude that b chains serve as an extracellular F. XIII (a chain)-binding protein.Supported by NHLI grant HL-11409.

1976 ◽  
Vol 36 (03) ◽  
pp. 542-550 ◽  
Author(s):  
Mircea P. Cucuianu ◽  
K Miloszewski ◽  
D Porutiu ◽  
M. S Losowsky

SummaryPlasma factor XIII activity measured by a quantitative assay was found to be significantly higher in hypertriglyceridaemic patients (type IV and combined hyperlipoproteinaemia), as compared to normolipaemic controls. No such elevation in plasma factor XIII activity was found in patients with type IIa hyperlipaemia. Plasma pseudocholinesterase was found to parallel the elevated factor XIII activity in hypertriglyceridaemic subjects.In contrast, platelet factor XIII activity was not raised in hyperlipaemic subjects, and plasma factor XIII was found to be normal in a normolipaemic subject with throm-bocythaemia.It was concluded that there is no significant contribution from platelets to plasma factor XIII activity, and that the observed increase in plasma factor XII in hypertriglyceridaemia results from enhanced hepatic synthesis of the enzyme.


Thrombin ◽  
1992 ◽  
pp. 257-271 ◽  
Author(s):  
L. Lorand ◽  
J. T. Radek

Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1028-1034 ◽  
Author(s):  
CS Greenberg ◽  
JV Dobson ◽  
CC Miraglia

Abstract The binding of plasma factor XIII to fibrinogen or fibrin that has been chemically or enzymatically induced to polymerize was studied. Factor XIII binding was assayed using a 3H-putrescine incorporation assay and an 125I-plasma factor XIII binding assay. More than 80% of the native and radiolabeled plasma factor XIII was bound to fibrin I formed by reptilase in EDTA, citrate, or heparin anticoagulated plasma. Plasma factor XIII and 125I-factor XIII was bound (89.6% to 92.5%) to fibrin II formed by thrombin in either citrate or EDTA anticoagulated plasma. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 125I-plasma factor XIII bound to fibrin I or fibrin II formed by reptilase or thrombin in the presence of EDTA demonstrated the b2- subunit remained bound to the a-chains or thrombin-cleaved a-chains. In the presence of calcium chloride and thrombin, the b2-subunit dissociated and factor XIIIa was bound. Protamine sulfate caused fibrinogen polymerization in the absence of divalent cations and reduced both plasma factor XIII and immunologic fibrinogen levels. Fibrinogen polymerized by protamine sulfate bound plasma factor XIII and the a2-subunit of 125I-platelet factor XIII. Plasma factor XIII was also bound to sonicated non-cross-linked fibrin II in either normal plasma or afibrinogenemic plasma. Plasma levels of several coagulation proteins were unchanged after the addition of reptilase, protamine sulfate, or sonicated fibrin to plasma. These results demonstrate that a specific binding site for the a2-subunit of plasma factor XIII is present on polymerized fibrinogen, fibrin I, and fibrin II. Furthermore, the presence of divalent cations, thrombin-cleavage of plasma factor XIII, and release of fibrinopeptides A or B are not required for plasma factor XIII binding to polymerized fibrinogen and fibrin.


1988 ◽  
Vol 256 (3) ◽  
pp. 1013-1019 ◽  
Author(s):  
C S Greenberg ◽  
J J Enghild ◽  
A Mary ◽  
J V Dobson ◽  
K E Achyuthan

Purified platelet Factor XIII was radioiodinated and then partially degraded by thrombin or trypsin, and a fibrin-binding fragment was identified by autoradiography and immunoblotting following separation by SDS/polyacrylamide-gel electrophoresis. Limited proteolysis of 125I-Factor XIII by thrombin or trypsin produced an 125I-51 kDa fragment and an unlabelled 19 kDa fragment. The 51 kDa fragment was purified by h.p.l.c. on a TSK-125 gel-filtration column. Partial amino acid sequence analysis of the 51 kDa fragment indicated that it was similar in sequence to the Gly38-Lys513 segment in placental Factor XIII a-chain. More than 70% of the 51 kDa fragment bound to fibrin, whereas the 19 kDa fragment did not bind. The active site was localized to the 51 kDa fragment since this fragment expressed transglutaminase activity, cross-linked fibrin and fibrinogen and incorporated iodo[14C]acetamide into the active-site cysteine residue. Isolation of a fibrin-binding fragment expressing transglutaminase activity demonstrates that each a-chain of the dimeric Factor XIIIa could function independently to cross-link fibrin. The fibrin-binding site could play an important role in localizing Factor XIIIa to the fibrin clot.


1987 ◽  
Author(s):  
C W Francis ◽  
V J Marder

Following fibrin polymerization, activated factor XIII stabilizes the clot by catalyzing the formation of specific intermolecular covalent crosslinks between pairs of y chains to form dimers and also among two or more a chains to form polymers. We have identified a series of previously uncharacterized a chain polymers with a wide range of sizes, including some with apparent Mr in excess of several million. Additionally, we establish the role of high concentrations of factor XIII in the extent and rate of α-polymer formation and provide evidence that the factor XIII required can be provided by platelets. Using SDS gel electrophoresis, we find that fibrin prepared from purified fibrinogen or from platelet-deficient plasma contains a series of 21 factor XIIIa crosslinked a chain polymers with Mr from 140,000 to 770,000. The mean Mr difference between individual polymers of 32,000 is consistent with a staggered, overlapping sequential addition of monomers to the growing α-polymer chain. In plasma containing no platelets, α-polymer formation was incomplete with residual α-monomer remaining. Progressively higher platelet counts facilitated more rapid crosslinking of a chains into larger polymers. Intact platelets were not required to promote crosslinking, since platelets lysed by freezing and thawing were also effective. Enrichment of plasma with placental factor XIII in an amount equal to that contained in platelets was as effective as platelets in accelerating the rate of formation and increasing the size of α-chain polymers. We conclude that platelets are a principal source of factor XIII for maximal fibrin stabilization, providing a larger quantity than is available from plasma alone and regulating both the rate and extent of α-polymer formation in thrombi or hemostatic plugs at sites of vascular injury.


1981 ◽  
Author(s):  
D M Rider ◽  
J M McDonagh

The action of plasmin on several blood clotting factors has been studied; however, controversy exists concerning the effect of plasmin on factor XIII. Factor XIII was purified from plasma and platelets and then exposed to plasmin for up to 6 hours. Plasmin to factor XIII ratios ranged from 0.03-0.1 casein units plasmin per mg factor XIII. These plasmin levels exhibited strong proteolytic activities against B-casein and purified human fibrinogen Following incubation of factor XIII (activated and unactivated) with plasmin the mixtures were electrophoresed on 7% SDS-polyacrylamide gels. The factor XIII preparations were assayed for 14C-putrescine incorporating activity before and after exposure to plasmin. Platelet factor XIII was,labeled With 125Iodine and lableled a subunit (activated and unactivated) was exposed to plalmin for up to 2 hours. These mixtures were electrophoresed on 12.5% Urea-SDS Polyacrylamide gels and a radioactivity profile was determined for each gel.Following extensive exposure to Plasmin the relative molecular weights of the factor XIII subunits (a, a* and b)remained constant and almost all (90-100%) of the 14C-put-rescine incorporating activity was recovered. The radio-activity profiles of the gels of 125I-labeled platelet factor XIII were identical before and after incubation with plasmin. Plasmin did not activate factor XIII in the assay system nor did factor XIII inactivate plasmin by crosslinking it. These experiments indicate that plasmin does not activate or degrade factor XIII and that the b subunit of plasma factor XIII plays no role in protecting the a subunit from the action of plasmin.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4515-4515
Author(s):  
Filipe R. Lorenzo ◽  
Derrick Haslem ◽  
Josef T. Prchal ◽  
Charles Greenberg

Abstract We report a case of fatal bleeding in a patient with mild congenital Factor XIII deficiency who also developed an inhibitor that interfered with fibrin stabilization. Plasma Factor XIII circulates as a tetramer composed of two A-chain and two B-chains and is bound to fibrinogen. After thrombin cleaves the A-chain at Arg 37, the B-chain dissociate producing Factor XIIIa. Factor XIIIa catalyzes covalent linkages between the fibrin molecules aligned in the fibrin clot. Factor XIIIa makes the fibrin resistant to disruption by urea and plasmin. Factor XIIIa levels greater than 1 % are needed to covalently stabilize a clot. We studied a 39 year old Hispanic male that presented with altered mental status, headache and a large left frontal parietal hemorrhage. Ultimately, he became non-responsive and was intubated. He had no major bleeding history but did have frequent nosebleeds. Routine blood counts and coagulation laboratory tests were normal. However, a qualitative Factor XIII assay was abnormal and the clot dissolved in 5M Urea. Furthermore, a 1:1 mixing study did not correct the defect suggesting the presence of an inhibitor. A small dose of cryoprecipitate was administered to the patient and this corrected the clot stability defect. Four days later, the defect recurred and 150 ml of cryoprecipitate was administered and despite correction of the fibrin stabilizing abnormality the patient died. Two of his sisters had a history of repeated hemorrhagic miscarriages in Mexico a finding consistent with congenital Factor XIII deficiency. DNA sequencing of the factor XIII a-chain gene was performed from the propositus’ mononuclear cells. A reverse transcription was done using an oligo(dT) 12–18 primer followed by nested PCR amplification and a heterozygous missense mutation was observed at codon 35 (G226T; Val35Leu). This mutation was than confirmed in propositus’ platelet cDNA. The Val35Leu substitution is close to the thrombin cleavage site, the G226T substitution is in the catalytic core domain. This case demonstrates that in some cases of Factor XIII deficiency there is residual Factor XIIIa activity in the mutant molecule that can prevent serious bleeding. However, patients may develop autoantibodies that further interfere with Factor XIII function and may suffer serious bleeding complications. Additional cases of Factor XIII deficiency may exist in patients that have mild bleeding problems.


Sign in / Sign up

Export Citation Format

Share Document