Immunohistological Studies of Coagulation Factors in Normal Blood Vessels and Platelets

1975 ◽  
Author(s):  
A. L. Bloom ◽  
J. C. Giddings ◽  
S. A. M. Shearn

Rabbit antisera to factors II, V, VIII (related protein), X, XI, fibrinogen and fragment D have been used to localise these factors in normal blood vessels and platelets by an indirect fluorescent antiglobulin technique. Localisation of factors V and VIII (RP) confined, to the endothelium of normal blood vessels was confirmed but the presence of fibrinogen and fragment D at this site was variable and these latter antigens were also demonstrated in the sub-intima and media. There was no evidence for the presence of prothrombin and factor X in normal blood vessels. Platelets, separated by albumingradient centrifugation were washed up to 12 times in buffer with and without Ca++. Factor VIII (RP) and factor V were present in platelets and resisted removal by repeated washings. Initial studies indicated that factor XI is not present in platelets or is easily removed. Weakly positive reactions were obtained for prothrombin with four-times washed platelets but the reaction was enhanced by repeated washings. Factor X (or Xa) was removed from platelets by Ca-free buffer but not by Ca - containing buffer. The results indicate the selective presence of coagulation factors in vascular endothelial cells and platelets and are consistent with the finding of a Ca-dependent link between phospholipid and factor Xa which was also demonstrated in conventional chromatographic studies.

1977 ◽  
Author(s):  
F. Elsinger

FEIBA IMMUNO is a preparation in which a new activity is generated capable of bypassing factor VIII. The preparation which is used to treat patients with inhibitors (especially inhibitors to factor VIII) is standardized in FEIBA units, i.e. in terms of its in vitro capacity to shorten the activated PTT of a factor VIII inhibitor plasma.It could be concluded from different in vitro experiments that none of the classic’ activated coagulation factors is responsible for the factor VIII bypassing reaction; FEIB-activity seems to be correlated to a new complex of coagulation factors.To get an answer to the question which coagulation factors are essential for FEIB-activity, we tried to generate this activity from different deficient plasmas; from these experiments the following conclusions could be drawn:, the presence of at least factors VII, IX, and X is essential for the generation of the molecular species responsible for factor VIII as well as factor X bypassing activity, but factor V is not bypassed. This activity is not factor Xa itself. Factors VIII and V are not necessary for the generation of this active principle, but factor V is finally needed for its bypassing action.


1994 ◽  
Vol 72 (06) ◽  
pp. 862-868 ◽  
Author(s):  
Frederick A Ofosu ◽  
J C Lormeau ◽  
Sharon Craven ◽  
Lori Dewar ◽  
Noorildan Anvari

SummaryFactor V activation is a critical step preceding prothrombinase formation. This study determined the contributions of factor Xa and thrombin, which activate purified factor V with similar catalytic efficiency, to plasma factor V activation during coagulation. Prothrombin activation began without a lag phase after a suspension of coagulant phospholipids, CaCl2, and factor Xa was added to factor X-depleted plasma. Hirudin, a potent thrombin inhibitor, abrogated prothrombin activation initiated with 0.5 and 1.0 nM factor Xa, but not with 5 nM factor Xa. In contrast, hirudin did not abrogate prothrombin activation in plasmas pre-incubated with 0.5,1.0 or 5 nM α-thrombin for 10 s followed by the coagulant suspension containing 0.5 nM factor Xa. Thus, thrombin activates plasma factor V more efficiently than factor Xa. At concentrations which doubled the clotting time of contact-activated normal plasma, heparin and three low Mr heparins also abrogated prothrombin activation initiated with 0.5 nM factor Xa, but not with 5 nM factor Xa. If factor V in the factor X-depleted plasma was activated (by pre-incubation with 10 nM a-thrombin for 60 s) before adding 0.5,1.0, or 5 nM factor Xa, neither hirudin nor the heparins altered the rates of prothrombin activation. Thus, none of the five anticoagulants inactivates prothrombinase. When 5 or 10 pM relipidated r-human tissue factor and CaCl2 were added to normal plasma, heparin and the three low Mr heparins delayed the onset of prothrombin activation until the concentration of factor Xa generated exceeded 1 nM, and they subsequently inhibited prothrombin activation to the same extent. Thus, hirudin, heparin and low Mr heparins suppress prothrombin activation solely by inhibiting prothrombinase formation.


1969 ◽  
Vol 22 (01) ◽  
pp. 045-067 ◽  
Author(s):  
K Deggeller ◽  
J Vreeken

SummaryThe formation and action of human prothrombin-activating enzyme is described. The study of the formation of the enzyme leads to the following conclusions :1. The enzyme is formed from factor V, factor X and phospholipid in the presence of calcium. If one of the reagents is omitted no activity develops.2. Factor V and factor X need activation by thrombin and for instance Russell Viper Venom, respectively.3. A linear relationship exists between the inverse of factor Va concentration and the inverse of enzyme concentration.4. A linear relationship exists between the inverse of factor Xa concentration and the inverse of enzyme concentration.5. A linear relationship exists between the inverse of phospholipid concentration and the inverse of enzyme concentration at small phospholipid concentration.6. A linear relationship exists between the phospholipid concentration and the inverse of enzyme concentration at high phospholipid concentration.The study of the action of the enzyme leads to the conclusion that human prothrombin is substrate and an inhibitor if present in excess.The observed phenomena are best explained by the hypothesis that factor Va and factor Xa adsorb onto the phospholipid surface. When both factors are adsorbed close together they are active as an enzyme. This activity depends on two active centers, probably one derived from factor Va and one from factor Xa.


1977 ◽  
Vol 37 (03) ◽  
pp. 535-540 ◽  
Author(s):  
D. S Pepper ◽  
D Banhegyi ◽  
Ann Howie

SummaryPrevious work from this department, concerned with testing the potential thrombogenicity of therapeutic factor IX concentrates, demonstrated that following recalcification of factor IX concentrates thrombin was generated within 3-30 minutes of incubation (Sas et al. 1975). The test developed (known as the TGt 50 test) is a two-stage assay and was thus found to be time consuming, tedious and tended to become inaccurate with long incubation periods and a large number of samples. A semiautomatic version of the test is reported in which the synthetic peptide Bz-ILE-GLU-GLY-ARG-pNA (S-2222) is added to recalcified, diluted factor IX concentrate in the micro-cuvette of a multiple sample recording spectrophotometer. Information can be obtained on (a) the amount of Xa (if any) present prior to recalcification (b) the initial amount of Xa formed and (c) the time taken to activate all factor X to Xa. Direct graphical interpretation shows a number of qualitative differences between commercial preparations, but by either of the criteria (b) or (c) above, it is possible to place the different products into “activated” and “non activated” groups such that both the Xa generation times and TGt 50 tests identify the same two groups of products. This agreement also indicates that the TGt 50 test is independent of the intrinsic factor V levels in the various concentrates.


Blood ◽  
2021 ◽  
Author(s):  
Eliza A Ruben ◽  
Michael J Rau ◽  
James Fitzpatrick ◽  
Enrico Di Cera

Coagulation factor V is the precursor of factor Va that, together with factor Xa, Ca2+ and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. Here we present cryo-EM structures of human factors V and Va at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding factor Xa and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain responsible for prothrombin binding. Ordering of this region and full exposure of the factor Xa epitope emerge as a necessary step for the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of factors V and Va and pioneer the analysis of coagulation factors by cryo-EM.


1987 ◽  
Author(s):  
F A Ofosu ◽  
G J Modi ◽  
M R Buchanan ◽  
J Hirsh ◽  
M A Blajchman

We have previously proposed that the steps in coagulation most sensitive to inhibition by heparin are the thrombin-dependent activation of factor V and factor VIII. This observation was based on the demonstration that therapeutic concentrations of heparin or 1μM of the thrombin specific inhibitor, phe-pro-arg CH2Cl (PPACK) completely inhibited the activation of prothrombin when contact-activated plasma (CAP) was recalcified for up to 1 min. Under similar conditions, heparin and PPACK only partially inhibited the activation of factor X. Moreover, the addition of thrombin (lOnM) to CAP 1 min before that of heparin or PPACK reversed their inhibitory effects. We now provide further support for our hypothesis by showing that when the activity of thrombin is suppressed by heparin or PPACK, efficient activation of radiolabelled prothrombin occurs only when the factor Xa then present activates factor V and factor VIII. We compared the effects of HEP of PPACK on the following four systems for initiating the activation of prothrombin: (1) CAP; (2) CAP + lOnM thrombin; (3) CAP + InM Xa and (4) unactivated plasma + InM Xa + InM Va + coagulant phospholipids. In each system, the enzymes were added 1 min before the heparin or PPACK. In the absence of heparin or PPACK, all four systems generated the same amount of thrombin activity in 45s. Complete inhibition of prothrombin activation by heparin and PPACK was observed only in system 1 which did not contain exogenous thrombin or factor Xa. No inhibition by heparin or PPACK was observed when thrombin or factor Xa was added to CAP in systems (2) and (3). Only partial inhibition was observed in system (4) which contained exogenous prothrombi-nase complex. Factor Xa thus provides an effective by-pass mechanism for the activation of factor VIII and factor V in plasma containing therapeutic concentrations of heparin. Our data provide further evidence that the heparin-antithrombin III system is not effective in inactivating factor Xa. These results support the hypothesis that in unactivated normal plasma, the primary anticoagulant effect of heparin is the inhibition of the thrombin-dependent activation of factor V and factor VIII.


1987 ◽  
Author(s):  
A Blanco ◽  
R Bonfil ◽  
O Bustoabad ◽  
M Lazzari

Increased deposition and lysis of fibrin, associated with malignant tissue, has led to look for activators of both the coagulation and fibrinolytic systems produced by tumor cells. We report the evidences of a procoagblant activity (PA) in the extracts of intratumoral necrosis from two experimental breast adenocarcinomas in murine model (BALB/c). The tumors have different metastatic capacity (MC). M3 without MC and MM3 with high MC.The addition of the extracts to: 1- Normal Plasma, 2- Deficient substrates in coagulation factors, 3- Purified, fibrinogen (I), showed: 1- Shortening of the plasma recalcification time (PRT) and APTT, without ;modification on prothrombin time (PT), 2- Reduction of the PRT on deficient substrates in factors: VIII; VII; VII and X; V; V, VII and X; without modification on II deficient substrate, 3- No PA on I. Table:C: Control, s: seconds, m: minutes. The PA was not affected by heparin. The results suggest that the PA is independent of the presence of either factor VIII or factor VII (intrinsic or extrinsic pathway respectively), as well as presence of either factor V or factor X. Any effect was observed either on factor II deficient substrate or on I, so, there was no evidence of thrombin activity The PA could be act directly on factor II, suggesting that fibrin formation could be induced by a “non-classical” activation pathway. No significant differences (p>0.5) in PA were observed between both tumoral necrosis extracts. The necrotic area in M3 (37%) is bigger than in MM3 (18%). So, much more PA could be present in MM3 and this could play a role in the MC of this tumor.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

Abstract The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


Sign in / Sign up

Export Citation Format

Share Document