Heparin and Low Molecular Weight Heparins Inhibit Prothrombinase Formation but not its Activity in Plasma

1994 ◽  
Vol 72 (06) ◽  
pp. 862-868 ◽  
Author(s):  
Frederick A Ofosu ◽  
J C Lormeau ◽  
Sharon Craven ◽  
Lori Dewar ◽  
Noorildan Anvari

SummaryFactor V activation is a critical step preceding prothrombinase formation. This study determined the contributions of factor Xa and thrombin, which activate purified factor V with similar catalytic efficiency, to plasma factor V activation during coagulation. Prothrombin activation began without a lag phase after a suspension of coagulant phospholipids, CaCl2, and factor Xa was added to factor X-depleted plasma. Hirudin, a potent thrombin inhibitor, abrogated prothrombin activation initiated with 0.5 and 1.0 nM factor Xa, but not with 5 nM factor Xa. In contrast, hirudin did not abrogate prothrombin activation in plasmas pre-incubated with 0.5,1.0 or 5 nM α-thrombin for 10 s followed by the coagulant suspension containing 0.5 nM factor Xa. Thus, thrombin activates plasma factor V more efficiently than factor Xa. At concentrations which doubled the clotting time of contact-activated normal plasma, heparin and three low Mr heparins also abrogated prothrombin activation initiated with 0.5 nM factor Xa, but not with 5 nM factor Xa. If factor V in the factor X-depleted plasma was activated (by pre-incubation with 10 nM a-thrombin for 60 s) before adding 0.5,1.0, or 5 nM factor Xa, neither hirudin nor the heparins altered the rates of prothrombin activation. Thus, none of the five anticoagulants inactivates prothrombinase. When 5 or 10 pM relipidated r-human tissue factor and CaCl2 were added to normal plasma, heparin and the three low Mr heparins delayed the onset of prothrombin activation until the concentration of factor Xa generated exceeded 1 nM, and they subsequently inhibited prothrombin activation to the same extent. Thus, hirudin, heparin and low Mr heparins suppress prothrombin activation solely by inhibiting prothrombinase formation.

1987 ◽  
Author(s):  
F A Ofosu ◽  
G J Modi ◽  
M R Buchanan ◽  
J Hirsh ◽  
M A Blajchman

We have previously proposed that the steps in coagulation most sensitive to inhibition by heparin are the thrombin-dependent activation of factor V and factor VIII. This observation was based on the demonstration that therapeutic concentrations of heparin or 1μM of the thrombin specific inhibitor, phe-pro-arg CH2Cl (PPACK) completely inhibited the activation of prothrombin when contact-activated plasma (CAP) was recalcified for up to 1 min. Under similar conditions, heparin and PPACK only partially inhibited the activation of factor X. Moreover, the addition of thrombin (lOnM) to CAP 1 min before that of heparin or PPACK reversed their inhibitory effects. We now provide further support for our hypothesis by showing that when the activity of thrombin is suppressed by heparin or PPACK, efficient activation of radiolabelled prothrombin occurs only when the factor Xa then present activates factor V and factor VIII. We compared the effects of HEP of PPACK on the following four systems for initiating the activation of prothrombin: (1) CAP; (2) CAP + lOnM thrombin; (3) CAP + InM Xa and (4) unactivated plasma + InM Xa + InM Va + coagulant phospholipids. In each system, the enzymes were added 1 min before the heparin or PPACK. In the absence of heparin or PPACK, all four systems generated the same amount of thrombin activity in 45s. Complete inhibition of prothrombin activation by heparin and PPACK was observed only in system 1 which did not contain exogenous thrombin or factor Xa. No inhibition by heparin or PPACK was observed when thrombin or factor Xa was added to CAP in systems (2) and (3). Only partial inhibition was observed in system (4) which contained exogenous prothrombi-nase complex. Factor Xa thus provides an effective by-pass mechanism for the activation of factor VIII and factor V in plasma containing therapeutic concentrations of heparin. Our data provide further evidence that the heparin-antithrombin III system is not effective in inactivating factor Xa. These results support the hypothesis that in unactivated normal plasma, the primary anticoagulant effect of heparin is the inhibition of the thrombin-dependent activation of factor V and factor VIII.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2989-2994 ◽  
Author(s):  
L Liu ◽  
GM Rodgers

In vivo prothrombin activation is thought to occur via a factor Xa/factor V-dependent mechanism. We investigated whether human venous endothelial cells (EC) could be induced to express a prothrombin activator. EC treated with lipopolysaccharide (LPS) or interleukin-1 activated prothrombin in the absence of exogenous factors Xa and V. This activity resided in the membrane fraction of EC and was not inhibited by an antibody to factor V. The apparent Km value was 3.3 +/- 0.3 mumol/L. Comparative studies of thrombin generation using a model system of phospholipid and factors Xa/V versus LPS-treated EC were performed to quantitate the effects of known inhibitors to factor Xa. The factor Xa inhibitor DEGR-chloromethyl ketone and an antibody to factor X inhibited prothrombin activation. However, the EC activator did not hydrolyze a factor Xa chromogenic substrate, and recombinant tick anticoagulant peptide did not suppress activity of the prothrombin activator. The apparent molecular weight of the EC activator was approximately 30 kD. Exogenous factor V enhanced the activity of the EC activator, such that in the presence of factor V, the apparent K(m) value was 1.28 +/- 0.10 mumol/L. Additionally, LPS-treated EC activated exogenous factor V. This activator has several characteristics of a previously described inducible murine monocyte prothrombin activator and may contribute to thrombin generation associated with pathologic stimuli.


Author(s):  
J. Rosing ◽  
G. Tans ◽  
J.W.P. Govers-Riemslag ◽  
R.F.A. Zwaal ◽  
H.C. Hemker

The kinetic parameters of the conversion of prothrombin into thrombin by activated clotting factor X (factor Xa) have been determined in the absence and presence of Ca2+, phospholipid (phosphatidyl serine/phosphatidylcholine vesicles) and activated blood clotting factor V (factor Va). In free solution the Km for prothrombin is 298 μM which is well above its plasma concentration of 4μM. Under these conditions the Vmax of thrombin formation is 1.25 Moles min-1 Mole Xa -1. When phospholipid is present the km for prothrombin drops to 0.1μM while the Vmax is only slightly affected (3 Moles min-1 Mo Le Xa -1). For the complete prothrombin activating complex consisting of factor Xa, factor Va, Ca2+ and phospholipids the kinetic constants greatly favour thrombin formation. A for prothrombin of 0.26μM and a Vmax of 2130 Moles min-1 Mole xa -1 are measured under these conditions. These results help to elucidate the role of phospholipid and factor Va in prothrombin activation. The earlier observed rate enhancements caused by phospholipid and factor Va are explained as effects on the Km for prothrombin and the Vmax of thrombin formation, respectively. The changes of the kinetic parameters for prothrombinase complexes of various composition will be considered with respect to the function of the accessory components in the mechanism of prothrombin activation. Implications of these data for in vivo blood coagulation will be discussed.


2004 ◽  
Vol 279 (19) ◽  
pp. 19580-19591 ◽  
Author(s):  
Thomas Orfeo ◽  
Nicole Brufatto ◽  
Michael E. Nesheim ◽  
Hung Xu ◽  
Saulius Butenas ◽  
...  

The prothrombinase complex consists of the protease factor Xa, Ca2+, and factor Va assembled on an anionic membrane. Factor Va functions both as a receptor for factor Xa and a positive effector of factor Xa catalytic efficiency and thus is key to efficient conversion of prothrombin to thrombin. The activation of the procofactor, factor V, to factor Va is an essential reaction that occurs early in the process of tissue factor-initiated blood coagulation; however, the catalytic sequence leading to formation of factor Va is a subject of disagreement. We have used biophysical and biochemical approaches to establish the second order rate constants and reaction pathways for the activation of phospholipid-bound human factor V by native and recombinant thrombin and meizothrombin, by mixtures of prothrombin activation products, and by factor Xa. We have also reassessed the activation of phospholipid-bound human prothrombin by factor Xa. Numerical simulations were performed incorporating the various pathways of factor V activation including the presence or absence of the pathway of factor V-independent prothrombin activation by factor Xa. Reaction pathways for factor V activation are similar for all thrombin forms. Empirical rate constants and the simulations are consistent with the following mechanism for factor Va formation. α-Thrombin, derived from factor Xa cleavage of phospholipid-bound prothrombin via the prethrombin 2 pathway, catalyzes the initial activation of factor V; generation of factor Va in a milieu already containing factor Xa enables prothrombinase formation with consequent meizothrombin formation; and meizothrombin functions as an amplifier of the process of factor V activation and thus has an important procoagulant role. Direct activation of factor V by factor Xa at physiologically relevant concentrations does not appear to be a significant contributor to factor Va formation.


1979 ◽  
Author(s):  
D. J. Baughman ◽  
A. Lytwyn

Attempts to automate a chromogenic one stage PT assay required hastening the onset of thrombin production without altering the rate of production. Assays were performed by combining 0.25ml chromogenic substrate S-2238 (2mM), 0.40ml tissue thromboplastin,0.050ml plasma, and 0.050ml diluted serum (40%v/v) in 1.35ml TRIS buffer (pH=8-5,I=0.15). Sera were prepared by using the supernatant of a) whole blood, b) recalcified plasma, c) recalc fied plasma and tissue thromboplastin, d)recalcified plasma and partial thromboplastin (cephalin and ellagic acid) and e) thrombin clotted plasma. The results indicated that S-2238, a potent thrombin inhibitor, delayed the onset and altered the rate of thrombin; production. Small amounts of thrombin shortened the initial generation of thrombin without altering its rate. Sera from a), c) and d) but not b) and e) resulted in immediate thrombin production at most plasma concentrations without affecting the rate, had no residual prothrombin, and had similar residual S-2238 activity not reduced by hirudin or At III-heparin. In particular, scrum b) had ~80% plasma Factor X which could be adsorbed without affecting thrombin production, had ~40% Factor V and ~300% Factor VII. These results suggest that when Factor VII activity is greater than ~7% there is an effect on the time but not on the rate of thrombin production via positive thrombin feedback scheme. Thus, the standard PT can measure the time of thrombin appearance, and/or the rate of thrombin production, and/or fibrin polymerization.


1979 ◽  
Author(s):  
B.U. Dahlbäck ◽  
J. Stenflo

The role of fragment 1, the vitamin K-dependent part of prothrombin containing γ-carboxyglutamic acid residues, and of fragment 2, the factor V-binding part of prothrombin for rapid prothrombin activation was studied. Activation rates of bovine prothrombin, acarboxyprothrombin and prethrombin 1 by factor Xa in the presence of platelets on the one hand and by the prothrombinase complex (factor Xa, factor V, phospholipid and Ca2+) on the other were compared. The conversion products of prothrombin in the presence of factor Xa and platelets were found to be the same as those seen when prothrombin was activated by the prothrombinase complex. The complete prothrombinase complex was more efficient even for activation of acarboxyprothrombin and prethrombin 1, which do not bind to phospholipid, than an abortive complex lacking the phospholipid. This was probably due to more effectively bound factor X . For rapid prothrombin activation by factor Xa in the presence of platelets both fragment 1 and fragment were found to be required. Acarboxyprothrombin and prethrombin 1 were slowly activated to thrombin by factor Xa in the presence of platelets but only after the platelet release reaction. The apparent KH of 0.6 uM prothrombin was 6 times lower than that of acarboxyprothrombin and the coefficient for proteolytic efficiency was approximately 50 times higher. The platelet surface ex posed upon the release reaction gradually lost its catalytic property during the prothrombin activation, probably due to destruction of the platelet factor Xa receptor by thrombin.


1993 ◽  
Vol 70 (03) ◽  
pp. 448-453 ◽  
Author(s):  
Ole Nordfang ◽  
Hanne I Kristensen ◽  
Sanne Valentin ◽  
Per Østergaard ◽  
Johnny Wadt

SummaryThe anticoagulant activities of Tissue Factor Pathway Inhibitor (TFPI), heparin and hirudin were compared in intrinsic (APTT) and extrinsic (PT) activated clotting assays. In contrast to the thrombin inhibitor hirudin, heparin was 10 fold more potent in the APTT assay than in the PT assay, indicating that inhibition of intrinsic activation is important for the anticoagulant activity of heparin as measured in an APTT assay. TFPI was most potent in the PT assay and the effect of TFPI was most pronounced in the presence of other anticoagulants (heparin and hirudin). The activities of the two natural anticoagulants antithrombin III (ATIII) and TFPI were compared in a PT assay with very dilute tissue factor. In this assay system TFPI in normal plasma affected the clotting time more than ATIII in the plasma. However, when heparin was added ATIII was the major anticoagulant, but profound Prolongation of the clotting time was only seen when TFPI was also added. In an ATIII deficient plasma heparin did not augment the effect of TFPI, showing that the increased effect of TFPI in the presence of heparin is dependent on the anticoagulant activity of ATIII/heparin. The effect of TFPI at prolonged clotting times was also illustrated by the significant effect of blocking TFPI in the plasma from warfarin-treated patients. Thus TFPI is a major anticoagulant in normal plasma and the effect of TFPI is especially seen at prolonged clotting times.


1969 ◽  
Vol 22 (01) ◽  
pp. 045-067 ◽  
Author(s):  
K Deggeller ◽  
J Vreeken

SummaryThe formation and action of human prothrombin-activating enzyme is described. The study of the formation of the enzyme leads to the following conclusions :1. The enzyme is formed from factor V, factor X and phospholipid in the presence of calcium. If one of the reagents is omitted no activity develops.2. Factor V and factor X need activation by thrombin and for instance Russell Viper Venom, respectively.3. A linear relationship exists between the inverse of factor Va concentration and the inverse of enzyme concentration.4. A linear relationship exists between the inverse of factor Xa concentration and the inverse of enzyme concentration.5. A linear relationship exists between the inverse of phospholipid concentration and the inverse of enzyme concentration at small phospholipid concentration.6. A linear relationship exists between the phospholipid concentration and the inverse of enzyme concentration at high phospholipid concentration.The study of the action of the enzyme leads to the conclusion that human prothrombin is substrate and an inhibitor if present in excess.The observed phenomena are best explained by the hypothesis that factor Va and factor Xa adsorb onto the phospholipid surface. When both factors are adsorbed close together they are active as an enzyme. This activity depends on two active centers, probably one derived from factor Va and one from factor Xa.


1996 ◽  
Vol 75 (02) ◽  
pp. 313-317 ◽  
Author(s):  
D J Kim ◽  
A Girolami ◽  
H L James

SummaryNaturally occurring plasma factor XFriuli (pFXFr) is marginally activated by both the extrinsic and intrinsic coagulation pathways and has impaired catalytic potential. These studies were initiated to obtain confirmation that this molecule is multi-functionally defective due to the substitution of Ser for Pro at position 343 in the catalytic domain. By the Nelson-Long site-directed mutagenesis procedure a construct of cDNA in pRc/CMV was derived for recombinant factor XFriuli (rFXFr) produced in human embryonic (293) kidney cells. The rFXFr was purified and shown to have a molecular size identical to that of normal plasma factor X (pFX) by gel electrophoretic, and amino-terminal sequencing revealed normal processing cleavages. Using recombinant normal plasma factor X (rFXN) as a reference, the post-translational y-carboxy-glutamic acid (Gla) and (β-hydroxy aspartic acid (β-OH-Asp) content of rFXFr was over 85% and close to 100%, respectively, of expected levels. The specific activities of rFXFr in activation and catalytic assays were the same as those of pFXFr. Molecular modeling suggested the involvement of a new H-bond between the side-chains of Ser-343 and Thr-318 as they occur in anti-parallel (3-pleated sheets near the substrate-binding pocket of pFXFr. These results support the conclusion that the observed mutation in pFXFr is responsible for its dysfunctional activation and catalytic potentials, and that it accounts for the moderate bleeding tendency in the homozygous individuals who possess this variant procoagulant.


1977 ◽  
Vol 37 (03) ◽  
pp. 535-540 ◽  
Author(s):  
D. S Pepper ◽  
D Banhegyi ◽  
Ann Howie

SummaryPrevious work from this department, concerned with testing the potential thrombogenicity of therapeutic factor IX concentrates, demonstrated that following recalcification of factor IX concentrates thrombin was generated within 3-30 minutes of incubation (Sas et al. 1975). The test developed (known as the TGt 50 test) is a two-stage assay and was thus found to be time consuming, tedious and tended to become inaccurate with long incubation periods and a large number of samples. A semiautomatic version of the test is reported in which the synthetic peptide Bz-ILE-GLU-GLY-ARG-pNA (S-2222) is added to recalcified, diluted factor IX concentrate in the micro-cuvette of a multiple sample recording spectrophotometer. Information can be obtained on (a) the amount of Xa (if any) present prior to recalcification (b) the initial amount of Xa formed and (c) the time taken to activate all factor X to Xa. Direct graphical interpretation shows a number of qualitative differences between commercial preparations, but by either of the criteria (b) or (c) above, it is possible to place the different products into “activated” and “non activated” groups such that both the Xa generation times and TGt 50 tests identify the same two groups of products. This agreement also indicates that the TGt 50 test is independent of the intrinsic factor V levels in the various concentrates.


Sign in / Sign up

Export Citation Format

Share Document