scholarly journals Do Resin Cements Alter Action Potentials of Isolated Rat Sciatic Nerve?

2011 ◽  
Vol 05 (02) ◽  
pp. 199-205
Author(s):  
Ahmet Atila Ertan ◽  
Nilufer Celebi Beriat ◽  
Mehmet Ali Onur ◽  
Gamze Tan ◽  
Murat Cavit Cehreli

ABSTRACTObjectives: The purpose of this study was to explore the effects dual-cure resin cements on nerve conduction. Methods: Panavia F, RelyX ARC, and Variolink II polymerized either by light-emitting diode (LED) or quartz tungsten halogen (QTH) were used in the study (n=10). The conductance of sciatic nerves of 50 rats were measured before and after contact with the specimens for 1 h. Results: The time-dependent change in nerve conductance and the comparison of LED versus QTH showed that differences between groups are significant (P&.05). For both polymerization techniques, pair-wise comparisons of resin cements showed that the nerve conductance between groups is different (P&.05). RelyX ARC elicited irreversible inhibition of compound action potentials (more than 50% change) and Panavia F and Variolink II polymerized by LED and QTH did not alter nerve conduction beyond physiologic limits. Conclusions: Resin cements may alter nerve conductance and even lead to neurotoxic effects. (Eur J Dent 2011;5:199-205)

2016 ◽  
Vol 27 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Dario Raimundo Segreto ◽  
Fabiana Scarparo Naufel ◽  
William Cunha Brandt ◽  
Ricardo Danil Guiraldo ◽  
Lourenço Correr-Sobrinho ◽  
...  

Abstract This study evaluated the bond strength (BS) of experimental resin cements formulated with different photoinitiators when activated by two kinds of light-curing units (LCUs) through a ceramic material. Seven resin blends with different camphorquinone (CQ) and/or phenylpropanedione (PPD) concentrations (weight) were prepared: C5: 0.5% CQ; C8: 0.8% CQ; P5: 0.5% PPD; P8: 0.8% PPD; C1P4: 0.1% CQ and 0.4% PPD; C4P1: 0.4% CQ and 0.1% PPD; C4P4: 0.4% CQ and 0.4% PPD. Two LCUs were used: one quartz-tungsten-halogen (QTH - 850 mW/cm²) and one light-emitting diode (LED - 1300 mW/cm²). The microtensile bond strength of each blend was assessed. Data were submitted to two-way ANOVA and Tukey's test (α=0.05). The BS values did not exhibit significant differences for LCUs, regardless of the photoinitiator type. Three cements showed significant differences: P5 and C5 had higher BS with QTH, and C4P1 with LED. For QTH, P5 showed the highest and C1P4 the lowest BS. For the LED, C4P1 showed the highest BS of all the cements. The results indicated that PPD was a viable alternative in the formulation of photocured resin cements, reducing or eliminating CQ that is yellowish without impairing the bond strength. Furthermore, both LED and QTH were effective in curing resin cements that contain PPD or CQ.


2015 ◽  
Vol 18 (2) ◽  
pp. 65 ◽  
Author(s):  
Dario Raimundo Segreto ◽  
Fabiana Scarparo Naufel ◽  
William Cunha Brandt ◽  
Ricardo Danil Guiraldo ◽  
Lourenço Correr-Sobrinho ◽  
...  

<p><strong>Objective: </strong>The aim of this study was to evaluate the degree of conversion (DC) of seven experimental resin cements formulated with different photoinitiators when activated by two light-curing units (LCUs) through ceramic material. <strong>Material and Methods: </strong>Seven resin blends with different camphorquinone (CQ) and/or phenyl propanedione (PPD) rates were prepared: C5: 0.5% wt CQ; C8: 0.8% wt CQ; P5: 0.5% wt PPD; P8: 0.8% wt PPD; C1P4: 0.1% wt CQ and 0.4% wt PPD; C4P1: 0.4% wt CQ and 0.1% wt PPD; and C4P4: 0.4% wt CQ and 0.4% wt PPD. Each mixture was loaded with 65% wt of silanized filler particles. For photoactivation procedures, two LCUs were used: a quartz-tungsten-halogen (QTH) and a light emitting diode (LED). <strong>Results: </strong>Irradiance (mW/cm²) was calculated by the ratio of the output power by the area of the tip. DC was assessed by Fourier transformed infrared spectroscopy. Data were submitted to a two-way ANOVA and Tukey’s test (5%). DC values do not show significant differences for LCUs regardless of the photoinitiator type. The highest DC was found for experimental cement P8 and the lowest for C5. <strong>Conclusion:</strong> Intermediate DC values were found for the other cements. However, when QTH was used, P8 exhibited differences among C1P4, C4P1 and C5; whereas when LED was employed, P8 differed only for C4P1 and C5. Thus, PPD is a viable alternative for the manufacture of photoactivated cements, and the PPD/CQ association may also be viable since C4P4 was similar to P8.</p>


Author(s):  
Hitoshi Okada ◽  
Susumu Itoh ◽  
Shohei Kawamoto ◽  
Miyo Ozaki ◽  
Takashi Kusaka

Objective Investigation of the reactivity of fractions of bilirubin photoisomers with the vanadic acid oxidation method. Methods Bilirubin photoisomers were prepared by irradiating a bilirubin/human serum albumin solution with blue light emitting diode. Direct bilirubin and bilirubin fractions were measured using the vanadic acid oxidation method and high-performance liquid chromatography in the sample before and after irradiation. Results Direct bilirubin was increased in the solution containing bilirubin photoisomers. ( EE)-/( EZ) -cyclobilirubin-IXα and ( ZE)-/( EZ)-bilirubin-IXα completely disappeared after the addition of vanadic acid. Conclusion Bilirubin photoisomers reacted as direct bilirubin in the vanadic acid oxidation method.


Author(s):  
Anuradha Vitthal Wankhade ◽  
Sharad Basavraj Kamat ◽  
Santosh Irappa Hugar ◽  
Girish Shankar Nanjannawar ◽  
Sumit Balasaheb Vhate

Introduction: New generation composite resin materials have revolutionized the art of aesthetic dentistry. The clinical success is dependent on effective polymerisation and surface hardness which in turn are dependent on the performance of Light Curing Units (LCU). This study utilises surface hardness as a measure of degree of polymerisation of composite resins achieved by LCUs. Aim: To evaluate the difference in surface hardness of nanohybrid and microhybrid resin composites cured by light curing systems, Light Emitting Diode (LED) and Quartz Tungsten Halogen (QTH). Materials and Methods: In this invitro experimental study, two types of hybrid composites (Nanohybrid and Microhybrid) were tested for surface hardness by using two different light curing systems (LED and QTH). All the Nanohybrid and Microhybrid specimens were cured using LED and QTH LCUs, thus giving four combinations. A total of 60 specimens (6 mm diameter and 2 mm depth) were prepared using Teflon mould with 15 samples for each combination. Surface hardness was measured on upper and lower surface after 24 hours and hardness ratio was calculated. Data was analysed using independent t-test for intergroup comparison. Level of significance was kept at 5%. Results: Surface hardness of resin composites cured by LED LCU was greater than those cured by QTH LCU. Additionally, the hardness value was greater for the upper surface. Nanohybrids showed better surface hardness than Microhybrids for both the LCUs. Conclusion: Nanohybrid composite resins and LED system were found to be more effective in terms of surface hardness as compared to their counterparts.


2019 ◽  
Vol 629 ◽  
pp. A27 ◽  
Author(s):  
A. Coffinet ◽  
C. Lovis ◽  
X. Dumusque ◽  
F. Pepe

Context. Doppler spectroscopy has been used in astronomy for more than 150 yr. In particular, it has permitted us to detect hundreds of exoplanets over the past 20 yr, and the goal today of detecting Earth-like planets requires a precision around 0.1 m s−1 or better. Doppler spectroscopy has also been and will be of major importance for other studies such as the variability of fundamental constants and cosmological studies. For all these applications, it is crucial to have the best possible wavelength calibration. Despite the fact that the HARPS spectrograph has been operational at the 3.6-m ESO telescope for more than 15 yr, and that it provides among the most precise Doppler measurements, improvements are still possible. One known problem, for instance, is the non-fully regular block-stitching of the charge-coupled devices (CCDs), which in some cases introduces one-year period parasitic signals in the measured radial velocity. Aims. The aim of the presented work is to improve the wavelength calibration of the HARPS spectrograph to push further its planet-detection capabilities. Methods. The properties of the CCD stitching-induced pixel-size anomalies were determined with light-emitting-diode (LED) flat-field frames, and then a physical, gap-corrected map of the CCDs is used for the fitting model of the spectral orders. We also used a new thorium line list, based on much higher-accuracy measurements than the one used up to now. We derive new wavelength solutions for the 15 yr of HARPS data, both before and after the fibre upgrade that took place in 2015. Results. We demonstrate that we do indeed correct the gap anomalies by computing the wavelength solutions of laser frequency comb exposures, known to have a very low dispersion, both with and without taking the gap correction into account. By comparing the rms of the most stable stars of the HARPS sample, we show that we globally decrease the radial velocity (RV) dispersion of the data, especially for the data acquired after the change of fibres of 2015. Finally, the comparative analysis of several individual systems shows that we manage to attenuate the periodogram power at one year in most cases. The analysis of the RVs derived from individual stellar lines also shows that we indeed correct the stitching-induced RV variation. Conclusions. This improved calibration of the HARPS spectrograph allows to go deeper in the search for low-amplitude radial-velocity signals. This new calibration process will be further improved by combining the thorium calibration spectra with laser frequency comb and Fabry–Perot calibration spectra, and this will not only be used for HARPS but notably also for HARPS-N and the new ESPRESSO spectrograph.


2002 ◽  
Vol 88 (3) ◽  
pp. 1302-1307 ◽  
Author(s):  
Angus M. Brown ◽  
Bruce R. Ransom

We investigated the effects of extracellular [Ca2+] ([Ca2+]o) on aglycemia-induced dysfunction and injury in adult rat optic nerves. Compound action potentials (CAPs) from adult rat optic nerve were recorded in vitro, and the area under the CAP was used to monitor nerve function before and after 1 h periods of aglycemia. In control artificial cerebrospinal fluid (ACSF) containing 2 mM Ca2+, CAP function fell after 29.9 ± 1.5 (SE) min and recovered to 48.8 ± 3.9% following aglycemia. Reducing bath [Ca2+] during aglycemia progressively improved recovery. For example, in Ca2+-free ACSF, the CAP recovered to 99.1 ± 3.8%. Paradoxically, increasing bath [Ca2+] also improved recovery from aglycemia. In 5 or 10 mM bath [Ca2+], CAP recovered to 78.8 ± 9.2 or 91.6 ± 5.2%, respectively. The latency to CAP failure during aglycemia increased as a function of bath [Ca2+] from 0 to 10 mM. Increasing bath [Mg2+] from 2 to 5 or 10 mM, with bath [Ca2+] held at 2 mM, increased latency to CAP failure with aglycemia and improved recovery from this insult. [Ca2+]o recorded with calcium-sensitive microelectrodes in control ACSF, dropped reversibly during aglycemia from 1.54 ± 0.03 to 0.45 ± 0.04 mM. In the presence of higher ambient levels of bath [Ca2+] (i.e., 5 or 10 mM), the aglycemia-induced decrease in [Ca2+]o declined, indicating that less Ca2+ left the extracellular space to enter an intracellular compartment. These results indicate that the role of [Ca2+], and divalent cations in general, during aglycemia is complex. While extracellular Ca2+ was required for irreversible aglycemic injury to occur, higher levels of [Ca2+] or [Mg2+] increased the latency to CAP failure and improved the extent of recovery, apparently by limiting Ca2+ influx. These effects are theorized to be mediated by divalent cation screening.


Sign in / Sign up

Export Citation Format

Share Document