Reactivity of bilirubin photoisomers on the measurement of direct bilirubin using vanadic acid method

Author(s):  
Hitoshi Okada ◽  
Susumu Itoh ◽  
Shohei Kawamoto ◽  
Miyo Ozaki ◽  
Takashi Kusaka

Objective Investigation of the reactivity of fractions of bilirubin photoisomers with the vanadic acid oxidation method. Methods Bilirubin photoisomers were prepared by irradiating a bilirubin/human serum albumin solution with blue light emitting diode. Direct bilirubin and bilirubin fractions were measured using the vanadic acid oxidation method and high-performance liquid chromatography in the sample before and after irradiation. Results Direct bilirubin was increased in the solution containing bilirubin photoisomers. ( EE)-/( EZ) -cyclobilirubin-IXα and ( ZE)-/( EZ)-bilirubin-IXα completely disappeared after the addition of vanadic acid. Conclusion Bilirubin photoisomers reacted as direct bilirubin in the vanadic acid oxidation method.

Author(s):  
Shohei Kawamoto ◽  
Kosuke Koyano ◽  
Miyo Ozaki ◽  
Takeshi Arai ◽  
Takashi Iwase ◽  
...  

Background Direct-reacting bilirubin concentrations measured using vanadate chemical oxidation method do not exactly match the conjugated bilirubin concentration. One of the causes is the effect of bilirubin photoisomers. However, the quantitative evaluation of the effects of these photoisomers has not been sufficiently conducted. In particular, the influence of bilirubin configurational isomers on direct bilirubin is the most critical factor. Methods Sixteen residual serum samples were used. For quantitative analysis based on the change in direct bilirubin and bilirubin configurational isomer, samples were irradiated via blue light-emitting diodes to suppress the production of bilirubin structural isomers. Total bilirubin and direct bilirubin concentrations were measured using the vanadate chemical oxidation method. Concentrations of 4Z,15Z-bilirubin IXα and its photoisomers were measured using high-performance liquid chromatography. The sum of 4Z,15E-bilirubin IXα and 4E,15Z-bilirubin IXα was notated as bilirubin configurational isomer, and the differences between the measured values of the irradiated and non-irradiated samples were calculated and notated as ΔDB and ΔBCI. Results In non-irradiated and irradiated samples, total bilirubin and direct bilirubin concentrations were 10.73 mg/dL with significant a decrease to 10.60 mg/dL and 0.69 mg/dL with a significant increase to 0.78 mg/dL, while bilirubin configurational isomer values were 1.00 mg/dL and 1.52 mg/dL, respectively. The linear regression equation revealed a significant positive correlation of Y = 0.187X−0.006 between ΔDB (Y) and ΔBCI (X). Conclusion Applying the vanadate chemical oxidation method affected approximately 19% of the bilirubin configurational isomer concentration for direct bilirubin. Extreme caution is necessary when interpreting the measured values of samples indicative of unconjugated hyperbilirubinaemia.


2015 ◽  
Vol 49 (3) ◽  
pp. 396-406 ◽  
Author(s):  
X-H Lee ◽  
J-T Yang ◽  
J-H Chang ◽  
W-T Chien ◽  
Y-C Lo ◽  
...  

In this paper, the design of a luminaire for badminton court illumination is demonstrated from concept through computer simulation, construction trials, on-site installation, comparison with simulations and, finally, evaluations of the illuminated environment before and after the installation of the luminaires. The luminaire is composed of two high-performance light-emitting diode lighting modules, volume scattering diffusers with a one-shot transmittance higher than 70% and a reflecting cavity with a reflectivity higher than 85%. The luminaire has three different exit faces forming three Lambertian-like light sources with low luminance so as to reduce glare to the players when looking at the flight of the shuttlecock. Under similar total electric power consumption, compared to the original traditional lighting, the average illuminance on the ground is enhanced by about 300% and the uniformity is obviously improved. A questionnaire was issued to players before and after the installation of the new light-emitting diode luminaires. The new installation gained much more positive responses for brightness, comfort and number of usable courts from the players than the old installation.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mingming Jiang ◽  
Fupeng Zhang ◽  
Kai Tang ◽  
Peng Wan ◽  
Caixia Kan

Achieving electrically-driven exciton-polaritons has drawn substantial attention toward developing ultralow-threshold coherent light sources, containing polariton laser devices and high-performance light-emitting diodes (LEDs). In this work, we demonstrate an electrically driven...


Nanoscale ◽  
2021 ◽  
Author(s):  
Soon-Hwan Kwon ◽  
Tae-Hyeon Kim ◽  
Sang-Min Kim ◽  
Semi Oh ◽  
Kyoung-Kook Kim

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors,...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fumiya Osawa ◽  
Kazuhiro Marumoto

Abstract Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal–insulator–semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint. We have clarified spin-states of electrically accumulated holes and electrons and their charge-trappings in the MIS diodes at the molecular level by directly observing their electrically-induced ESR signals; the spin-states are well reproduced by density functional theory. In contrast to a green light-emitting material, the ADN radical anions largely accumulate in the film, which will cause the large degradation of the molecule and devices. The result will give deeper understanding of blue OLEDs and be useful for developing high-performance and durable devices.


Author(s):  
Soo-Ghang Ihn ◽  
Eun Suk Kwon ◽  
Yongsik Jung ◽  
Jong Soo Kim ◽  
Sungho Nam ◽  
...  

We present a high-performance blue phosphorescent organic light-emitting diode exhibiting a low operating voltage (4.1 V), high external quantum efficiency (23.4%, at 500 cd m-2) with a low efficiency roll-off...


2019 ◽  
Vol 629 ◽  
pp. A27 ◽  
Author(s):  
A. Coffinet ◽  
C. Lovis ◽  
X. Dumusque ◽  
F. Pepe

Context. Doppler spectroscopy has been used in astronomy for more than 150 yr. In particular, it has permitted us to detect hundreds of exoplanets over the past 20 yr, and the goal today of detecting Earth-like planets requires a precision around 0.1 m s−1 or better. Doppler spectroscopy has also been and will be of major importance for other studies such as the variability of fundamental constants and cosmological studies. For all these applications, it is crucial to have the best possible wavelength calibration. Despite the fact that the HARPS spectrograph has been operational at the 3.6-m ESO telescope for more than 15 yr, and that it provides among the most precise Doppler measurements, improvements are still possible. One known problem, for instance, is the non-fully regular block-stitching of the charge-coupled devices (CCDs), which in some cases introduces one-year period parasitic signals in the measured radial velocity. Aims. The aim of the presented work is to improve the wavelength calibration of the HARPS spectrograph to push further its planet-detection capabilities. Methods. The properties of the CCD stitching-induced pixel-size anomalies were determined with light-emitting-diode (LED) flat-field frames, and then a physical, gap-corrected map of the CCDs is used for the fitting model of the spectral orders. We also used a new thorium line list, based on much higher-accuracy measurements than the one used up to now. We derive new wavelength solutions for the 15 yr of HARPS data, both before and after the fibre upgrade that took place in 2015. Results. We demonstrate that we do indeed correct the gap anomalies by computing the wavelength solutions of laser frequency comb exposures, known to have a very low dispersion, both with and without taking the gap correction into account. By comparing the rms of the most stable stars of the HARPS sample, we show that we globally decrease the radial velocity (RV) dispersion of the data, especially for the data acquired after the change of fibres of 2015. Finally, the comparative analysis of several individual systems shows that we manage to attenuate the periodogram power at one year in most cases. The analysis of the RVs derived from individual stellar lines also shows that we indeed correct the stitching-induced RV variation. Conclusions. This improved calibration of the HARPS spectrograph allows to go deeper in the search for low-amplitude radial-velocity signals. This new calibration process will be further improved by combining the thorium calibration spectra with laser frequency comb and Fabry–Perot calibration spectra, and this will not only be used for HARPS but notably also for HARPS-N and the new ESPRESSO spectrograph.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 318 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Naoto Shirahata

Here we report a quantum dot light emitting diode (QLED), in which a layer of colloidal silicon quantum dots (SiQDs) works as the optically active component, exhibiting a strong electroluminescence (EL) spectrum peaking at 620 nm. We could not see any fluctuation of the EL spectral peak, even in air, when the operation voltage varied in the range from 4 to 5 V because of the possible advantage of the inverted device structure. The pale-orange EL spectrum was as narrow as 95 nm. Interestingly, the EL spectrum was narrower than the corresponding photoluminescence (PL) spectrum. The EL emission was strong enough to be seen by the naked eye. The currently obtained brightness (∼4200 cd/m2), the 0.033% external quantum efficiency (EQE), and a turn-on voltage as low as 2.8 V show a sufficiently high performance when compared to other orange-light-emitting Si-QLEDs in the literature. We also observed a parasitic emission from the neighboring compositional layer (i.e., the zinc oxide layer), and its intensity increased with the driving voltage of the device.


Sign in / Sign up

Export Citation Format

Share Document