scholarly journals Use of the Facial Artery for Free Functioning Muscle Transfers: An Alternative Pedicle for Salvage in Brachial Plexus Lesions with Vascular Injuries

2020 ◽  
Vol 53 (01) ◽  
pp. 105-111
Author(s):  
Anil Bhatia ◽  
Kaustubh Prabhune ◽  
Alex De Carvalho

AbstractFree functional muscle transfer (FFMT) is a salvage procedure recommended in cases of brachial plexus injury with late presentations or failures of primary nerve reconstruction. The workhorse for most authors is the gracilis, and the most common indication is the restoration of elbow flexion. For successful revascularization of the muscle, donor vessels must be in proximity of the site of the muscle fixation and allow direct coaptation to a donor nerve, ideally without the use of nerve grafts. A major problem occurs when patients have sustained concomitant vascular injuries to the subclavian and/or axillary arteries and had previous surgical dissections in the area where the most common vascular pedicles are located. The authors report the use of the rerouted facial vessels as donors in these complex cases. The surgical technique is presented, along with three cases where the procedure was used. The flaps survived in all the patients and grade > 3/5 muscle contraction was observed in the two patients who had adequate follow-up. Conclusion: the use of the facial vessels as donor vessels is an option to revascularize a FFMT in the setting of severe vascular injury to the subclavian and axillary arteries.

2014 ◽  
Vol 40 (6) ◽  
pp. 573-582 ◽  
Author(s):  
W. L. Lam ◽  
D. Fufa ◽  
N.-J. Chang ◽  
D.C.-C. Chuang

Infraclavicular brachial plexus injuries (Level IV in Chuang’s classification) have special characteristics, including high incidences of associated scapular fractures, glenohumeral dislocations, and vascular injuries. In addition, there are specific difficulties in surgical dissection and nerve repairs, especially if surgery is delayed (>3 months). A total of 153 patients with Level IV brachial plexus injuries underwent surgery between 1987 and 2008 with 75 patients (average age 29 years) available for a minimum of 4 years follow-up. Accompanying fractures/dislocations were suffered by 48 (64%) patients, and 17 (23%) had associated vascular injuries. The most common nerves to be injured were the axillary and musculocutaneous nerves. Nerve grafts to the axillary, musculocutaneous, and radial nerves achieved impressive results, but less reliable outcomes were achieved with the median and ulnar nerves. Decompression and/or external neurolysis were also beneficial for nerve recovery. Some surgical tips are presented, and the use of the C-loop vascularized ulnar nerve graft and functioning muscle transfers are discussed. Level of Evidence: IV


Hand ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Aaron B. Mull ◽  
Michael C. Nicoson ◽  
Amy M. Moore ◽  
Dan A. Hunter ◽  
Thomas H. Tung

Background: Current management of brachial plexus injuries includes nerve grafts and nerve transfers. However, in cases of late presentation or pan plexus injuries, free functional muscle transfers are an option to restore function. The purpose of our study was to describe and evaluate the rectus abdominis motor nerves histomorphologically and functionally as a donor nerve option for free functional muscle transfer for the reconstruction of brachial plexus injuries. Methods: High intercostal, rectus abdominis, thoracodorsal, and medial pectoral nerves were harvested for histomorphometric analysis from 4 cadavers from levels T3-8. A retrospective chart review was performed of all free functional muscle transfers from 2001 to 2014 by a single surgeon. Results: Rectus abdominis nerve branches provide a significant quantity of motor axons compared with high intercostal nerves and are comparable to the anterior branch of the thoracodorsal nerve and medial pectoral nerve branches. Clinically, the average recovery of elbow flexion was comparable to conventional donors for 2-stage muscle transfer. Conclusion: Rectus abdominis motor nerves have similar nerve counts to thoracodorsal, medial pectoral nerves, and significantly more than high intercostal nerves alone. The use of rectus abdominis motor nerve branches allows restoration of elbow flexion comparable to other standard donors. In cases where multiple high intercostal nerves are not available as donors (rib fractures, phrenic nerve injury), rectus abdominis nerves provide a potential option for motor reconstruction without adversely affecting respiration.


2019 ◽  
Vol 44 (6) ◽  
pp. 620-627 ◽  
Author(s):  
Tina Munn Yi Lee ◽  
Sreedharan Sechachalam ◽  
Mala Satkunanantham

Elbow flexion is widely regarded as the most important function to restore in brachial plexus injuries. Free functioning muscle transfer surgery is indicated in patients with delayed presentation or failure of other primary procedures. Results of the transfer surgeries have been reported in the form of case series, but no further studies are available. This systematic review aims to provide a deeper understanding of this complex surgery and consists of 19 articles that include 364 patients. Data on injury characteristics, surgical techniques, complications as well as outcome measures were analysed. Our results show that functional muscle transfer for elbow flexion enables 87% and 65% of patients to achieve a useful power grade of ≥ 3 and ≥ 4, respectively, although other important outcome factors should be considered.


2015 ◽  
Vol 41 (2) ◽  
pp. 185-190 ◽  
Author(s):  
E. Gibon ◽  
C. Romana ◽  
R. Vialle ◽  
F. Fitoussi

Cervical root avulsions are the worst pattern of injury in obstetrical brachial plexus injury (OBPI). The prognosis is poor and the treatment is mainly surgical with extraplexual neurotizations or muscle transfers. We present the outcomes of a technique performed in our institution to treat C5–C6 avulsion in obstetrical brachial plexus injury. This technique consists of a total ipsilateral C7 neurotization to the upper trunk. Ten babies with isolated C5–C6 root avulsion were operated on; we were able to review nine of them at over 12 months follow-up. The shoulder and the elbow function were assessed, as well as the Mallet Score. The mean follow-up was 9.2 years (SD 5.7). After a follow-up of 6 years, elbow flexion was restored with a range of motion ⩾130° and a motor function ⩾M3 in all patients. The average Mallet score was 18.1 (SD 1.2). This approach appears to be a viable alternative to extraplexual neurotizations for the treatment of C5–C6 nerve root avulsion.


2020 ◽  
Vol 132 (6) ◽  
pp. 1914-1924 ◽  
Author(s):  
Liang Li ◽  
Jiantao Yang ◽  
Bengang Qin ◽  
Honggang Wang ◽  
Yi Yang ◽  
...  

OBJECTIVEHuman acellular nerve allograft applications have increased in clinical practice, but no studies have quantified their influence on reconstruction outcomes for high-level, greater, and mixed nerves, especially the brachial plexus. The authors investigated the functional outcomes of human acellular nerve allograft reconstruction for nerve gaps in patients with brachial plexus injury (BPI) undergoing contralateral C7 (CC7) nerve root transfer to innervate the upper trunk, and they determined the independent predictors of recovery in shoulder abduction and elbow flexion.METHODSForty-five patients with partial or total BPI were eligible for this retrospective study after CC7 nerve root transfer to the upper trunk using human acellular nerve allografts. Deltoid and biceps muscle strength, degree of shoulder abduction and elbow flexion, Semmes-Weinstein monofilament test, and static two-point discrimination (S2PD) were examined according to the modified British Medical Research Council (mBMRC) scoring system, and disabilities of the arm, shoulder, and hand (DASH) were scored to establish the function of the affected upper limb. Meaningful recovery was defined as grades of M3–M5 or S3–S4 based on the scoring system. Subgroup analysis and univariate and multivariate logistic regression analyses were conducted to identify predictors of human acellular nerve allograft reconstruction.RESULTSThe mean follow-up duration and the mean human acellular nerve allograft length were 48.1 ± 10.1 months and 30.9 ± 5.9 mm, respectively. Deltoid and biceps muscle strength was grade M4 or M3 in 71.1% and 60.0% of patients. Patients in the following groups achieved a higher rate of meaningful recovery in deltoid and biceps strength, as well as lower DASH scores (p < 0.01): age < 20 years and age 20–29 years; allograft lengths ≤ 30 mm; and patients in whom the interval between injury and surgery was < 90 days. The meaningful sensory recovery rate was approximately 70% in the Semmes-Weinstein monofilament test and S2PD. According to univariate and multivariate logistic regression analyses, age, interval between injury and surgery, and allograft length significantly influenced functional outcomes.CONCLUSIONSHuman acellular nerve allografts offered safe reconstruction for 20- to 50-mm nerve gaps in procedures for CC7 nerve root transfer to repair the upper trunk after BPI. The group in which allograft lengths were ≤ 30 mm achieved better functional outcome than others, and the recommended length of allograft in this procedure was less than 30 mm. Age, interval between injury and surgery, and allograft length were independent predictors of functional outcomes after human acellular nerve allograft reconstruction.


2021 ◽  
Author(s):  
Mariano Socolovsky ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
Ana Lovaglio ◽  
Kartik G Krishnan

Abstract BACKGROUND Traumatic brachial plexus injuries cause long-term maiming of patients. The major target function to restore in complex brachial plexus injury is elbow flexion. OBJECTIVE To retrospectively analyze the correlation between the length of the nerve graft and the strength of target muscle recovery in extraplexual and intraplexual nerve transfers. METHODS A total of 51 patients with complete or near-complete brachial plexus injuries were treated with a combination of nerve reconstruction strategies. The phrenic nerve (PN) was used as axon donor in 40 patients and the spinal accessory nerve was used in 11 patients. The recipient nerves were the anterior division of the upper trunk (AD), the musculocutaneous nerve (MC), or the biceps branches of the MC (BBs). An index comparing the strength of elbow flexion between the affected and the healthy arms was correlated with the choice of target nerve recipient and the length of nerve grafts, among other parameters. The mean follow-up was 4 yr. RESULTS Neither the choice of MC or BB as a recipient nor the length of the nerve graft showed a strong correlation with the strength of elbow flexion. The choice of very proximal recipient nerve (AD) led to axonal misrouting in 25% of the patients in whom no graft was employed. CONCLUSION The length of the nerve graft is not a negative factor for obtaining good muscle recovery for elbow flexion when using PN or spinal accessory nerve as axon donors in traumatic brachial plexus injuries.


Author(s):  
V. Purushothaman ◽  
K. Vinoth Kumar ◽  
Sabari Girish Ambat ◽  
R. Venkataswami

Abstract Background Total brachial plexus palsy (TBPP) accounts for nearly 50% of all brachial plexus injuries. Since achieving a good functional hand was almost impossible, the aim was settled to get a good shoulder and elbow function. It was Gu, who popularized the concept of utilizing contralateral C7 (CC7) with vascularized ulnar nerve graft (VUNG) to get some hand function. We have modified it to suit our patients by conducting it as a single-stage procedure, thereby trying to get a functional upper limb. Methods From 2009 to 2014, we had 20 TBPP patients. We feel nerve reconstruction is always better than any other salvage procedure, including free muscle transfer. We modified Gu's concept and present our concept of total nerve reconstruction as “ALL IN ONE OR (W)HOLE IN ONE REPAIR.” Results All patients able to move their reconstructed limbs independently or with the help of contralateral limbs. Three patients developed hook grip and one patient was able to incorporate limbs to do bimanual jobs. One important observation is that all the reconstructed limbs regain the bulk, and to a certain extent, the attitude and appearance looks normal, as patients no longer hide it or hang it in a sling. Conclusion Adult brachial plexus injury itself is a devastating injury affecting young males. By doing this procedure, the affected limb is not dissociated from the rest of the body and rehabilitation can be aimed to get a supportive limb.


2019 ◽  
Vol 24 (03) ◽  
pp. 283-288
Author(s):  
Yusuke Nagano ◽  
Daisuke Kawamura ◽  
Alaa Terkawi ◽  
Atsushi Urita ◽  
Yuichiro Matsui ◽  
...  

Background: Partial ulnar nerve transfer to the biceps motor branch of the musculocutaneous nerve (Oberlin’s transfer) is a successful approach to restore elbow flexion in patients with upper brachial plexus injury (BPI). However, there is no report on more than 10 years subjective and objective outcomes. The purpose of this study was to clarify the long-term outcomes of Oberlin’s transfer based on the objective evaluation of elbow flexion strength and subjective functional evaluation of patients. Methods: Six patients with BPI who underwent Oberlin’s transfer were reviewed retrospectively by their medical records. The mean age at surgery was 29.5 years, and the mean follow-up duration was 13 years. The objective functional outcomes were evaluated by biceps muscle strength using the Medical Research Council (MRC) grade at preoperative, postoperative, and final follow-up. The patient-derived subjective functional outcomes were evaluated using the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH) questionnaire at final follow-up. Results: All patients had MRC grade 0 (M0) or 1 (M1) elbow flexion strength before operation. Four patients gained M4 postoperatively and maintained or increased muscle strength at the final follow-up. One patient gained M3 postoperatively and at the final follow-up. Although one patient achieved M4 postoperatively, the strength was reduced to M2 due to additional disorder. The mean score of QuickDASH was 36.5 (range, 7–71). Patients were divided into two groups; three patients had lower scores and the other three patients had higher scores of QuickDASH. Conclusions: Oberlin’s transfer is effective in the restoration of elbow flexion and can maintain the strength for more than 10 years. Patients with upper BPI with restored elbow flexion strength and no complicated nerve disorders have over ten-year subjective satisfaction.


2020 ◽  
Vol 19 (3) ◽  
pp. 249-254
Author(s):  
Mariano Socolovsky ◽  
Marcio de Mendonça Cardoso ◽  
Ana Lovaglio ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
...  

Abstract BACKGROUND The phrenic nerve has been extensively reported to be a very powerful source of transferable axons in brachial plexus injuries. The most used technique used is supraclavicular sectioning of this nerve. More recently, video-assisted thoracoscopic techniques have been reported as a good alternative, since harvesting a longer phrenic nerve avoids the need of an interposed graft. OBJECTIVE To compare grafting vs phrenic nerve transfer via thoracoscopy with respect to mean elbow strength at final follow-up. METHODS A retrospective analysis was conducted among patients who underwent phrenic nerve transfer for elbow flexion at 2 centers from 2008 to 2017. All data analysis was performed in order to determine statistical significance among the analyzed variables. RESULTS A total of 32 patients underwent supraclavicular phrenic nerve transfer, while 28 underwent phrenic nerve transfer via video-assisted thoracoscopy. Demographic characteristics were similar in both groups. A statistically significant difference in elbow flexion strength recovery was observed, favoring the supraclavicular phrenic nerve section group against the intrathoracic group (P = .036). A moderate though nonsignificant difference was observed favoring the same group in mean elbow flexion strength. Also, statistical differences included patient age (P = .01) and earlier time from trauma to surgery (P = .069). CONCLUSION Comparing supraclavicular sectioning of the nerve vs video-assisted, intrathoracic nerve sectioning to restore elbow flexion showed that the former yielded statistically better results than the latter, in terms of the percentage of patients who achieve at least level 3 MRC strength at final follow-up. Furthermore, larger scale prospective studies assessing the long-term effects of phrenic nerve transfers remain necessary.


Sign in / Sign up

Export Citation Format

Share Document