Algorithmic Detection of Boolean Logic Errors in Clinical Decision Support Statements

2021 ◽  
Vol 12 (01) ◽  
pp. 182-189
Author(s):  
Adam Wright ◽  
Skye Aaron ◽  
Allison B. McCoy ◽  
Robert El-Kareh ◽  
Daniel Fort ◽  
...  

Abstract Objective Clinical decision support (CDS) can contribute to quality and safety. Prior work has shown that errors in CDS systems are common and can lead to unintended consequences. Many CDS systems use Boolean logic, which can be difficult for CDS analysts to specify accurately. We set out to determine the prevalence of certain types of Boolean logic errors in CDS statements. Methods Nine health care organizations extracted Boolean logic statements from their Epic electronic health record (EHR). We developed an open-source software tool, which implemented the Espresso logic minimization algorithm, to identify three classes of logic errors. Results Participating organizations submitted 260,698 logic statements, of which 44,890 were minimized by Espresso. We found errors in 209 of them. Every participating organization had at least two errors, and all organizations reported that they would act on the feedback. Discussion An automated algorithm can readily detect specific categories of Boolean CDS logic errors. These errors represent a minority of CDS errors, but very likely require correction to avoid patient safety issues. This process found only a few errors at each site, but the problem appears to be widespread, affecting all participating organizations. Conclusion Both CDS implementers and EHR vendors should consider implementing similar algorithms as part of the CDS authoring process to reduce the number of errors in their CDS interventions.

2011 ◽  
Vol 02 (01) ◽  
pp. 50-62 ◽  
Author(s):  
A. Wright ◽  
G.J. Kuperman ◽  
A.J. Vaida ◽  
A.M. Bobb ◽  
R.A. Jenders ◽  
...  

SummaryClinical decision support (CDS) can improve safety, quality, and cost-effectiveness of patient care, especially when implemented in computerized provider order entry (CPOE) applications. Medication-related decision support logic forms a large component of the CDS logic in any CPOE system. However, organizations wishing to implement CDS must either purchase the computable clinical content or develop it themselves. Content provided by vendors does not always meet local expectations. Most organizations lack the resources to customize the clinical content and the expertise to implement it effectively. In this paper, we describe the recommendations of a national expert panel on two basic medication-related CDS areas, specifically, drug-drug interaction (DDI) checking and duplicate therapy checking. The goals of this study were to define a starter set of medication-related alerts that health-care organizations can implement in their clinical information systems. We also draw on the experiences of diverse institutions to highlight the realities of implementing medication decision support. These findings represent the experiences of institutions with a long history in the domain of medication decision support, and the hope is that this guidance may improve the feasibility and efficiency CDS adoption across healthcare settings.


2015 ◽  
Vol 22 (5) ◽  
pp. 1081-1088 ◽  
Author(s):  
Allison B McCoy ◽  
Adam Wright ◽  
Dean F Sittig

Abstract Objective Clinical decision support (CDS) is essential for delivery of high-quality, cost-effective, and safe healthcare. The authors sought to evaluate the CDS capabilities across electronic health record (EHR) systems. Methods We evaluated the CDS implementation capabilities of 8 Office of the National Coordinator for Health Information Technology Authorized Certification Body (ONC-ACB)-certified EHRs. Within each EHR, the authors attempted to implement 3 user-defined rules that utilized the various data and logic elements expected of typical EHRs and that represented clinically important evidenced-based care. The rules were: 1) if a patient has amiodarone on his or her active medication list and does not have a thyroid-stimulating hormone (TSH) result recorded in the last 12 months, suggest ordering a TSH; 2) if a patient has a hemoglobin A1c result >7% and does not have diabetes on his or her problem list, suggest adding diabetes to the problem list; and 3) if a patient has coronary artery disease on his or her problem list and does not have aspirin on the active medication list, suggest ordering aspirin. Results Most evaluated EHRs lacked some CDS capabilities; 5 EHRs were able to implement all 3 rules, and the remaining 3 EHRs were unable to implement any of the rules. One of these did not allow users to customize CDS rules at all. The most frequently found shortcomings included the inability to use laboratory test results in rules, limit rules by time, use advanced Boolean logic, perform actions from the alert interface, and adequately test rules. Conclusion Significant improvements in the EHR certification and implementation procedures are necessary.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mitchell A. Frankel ◽  
Mark J. Lehmkuhle ◽  
Mark C. Spitz ◽  
Blake J. Newman ◽  
Sindhu V. Richards ◽  
...  

Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography (EEG) sensor. Four Epilog sensors are combined as part of Epitel's Remote EEG Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring. REMI is designed to provide comprehensive spatial EEG recordings that can be administered by non-specialized medical personnel in any medical center. The purpose of this study was to determine how accurate epileptologists are at remotely reviewing Epilog sensor EEG in the 10-channel “REMI montage,” with and without seizure detection support software. Three board certified epileptologists reviewed the REMI montage from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists randomly reviewed the same datasets with and without clinical decision support annotations from an automated seizure detection algorithm tuned to be highly sensitive. Blinded consensus review of unannotated Epilog EEG in the REMI montage detected people who were experiencing electrographic seizure activity with 90% sensitivity and 90% specificity. Consensus detection of individual focal onset seizures resulted in a mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002 false positives per hour (FP/h) of data. With algorithm seizure detection annotations, the consensus review mean sensitivity improved to 68% with a slight increase in FDR (0.005 FP/h). As seizure detection software, the automated algorithm detected people who were experiencing electrographic seizure activity with 100% sensitivity and 70% specificity, and detected individual focal onset seizures with a mean sensitivity of 90% and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists' ability to blindly review EEG from four Epilog sensors in the REMI montage, and the results demonstrate the clinical potential to accurately identify patients experiencing electrographic seizures. Additionally, the automated algorithm shows promise as clinical decision support software to detect discrete electrographic seizures in individual records as accurately as FDA-cleared predicates.


2019 ◽  
Vol 26 (11) ◽  
pp. 1375-1378
Author(s):  
David Rubins ◽  
Adam Wright ◽  
Tarik Alkasab ◽  
M Stephen Ledbetter ◽  
Amy Miller ◽  
...  

Abstract Clinical decision support (CDS) systems are prevalent in electronic health records and drive many safety advantages. However, CDS systems can also cause unintended consequences. Monitoring programs focused on alert firing rates are important to detect anomalies and ensure systems are working as intended. Monitoring efforts do not generally include system load and time to generate decision support, which is becoming increasingly important as more CDS systems rely on external, web-based content and algorithms. We report a case in which a web-based service caused significant increase in the time to generate decision support, in turn leading to marked delays in electronic health record system responsiveness, which could have led to patient safety events. Given this, it is critical to consider adding decision support-time generation to ongoing CDS system monitoring programs.


2021 ◽  
Vol 12 (04) ◽  
pp. 710-720
Author(s):  
David A. Dorr ◽  
Christopher D'Autremont ◽  
Christie Pizzimenti ◽  
Nicole Weiskopf ◽  
Robert Rope ◽  
...  

Abstract Objective This study examines guideline-based high blood pressure (HBP) and hypertension recommendations and evaluates the suitability and adequacy of the data and logic required for a Fast Healthcare Interoperable Resources (FHIR)-based, patient-facing clinical decision support (CDS) HBP application. HBP is a major predictor of adverse health events, including stroke, myocardial infarction, and kidney disease. Multiple guidelines recommend interventions to lower blood pressure, but implementation requires patient-centered approaches, including patient-facing CDS tools. Methods We defined concept sets needed to measure adherence to 71 recommendations drawn from eight HBP guidelines. We measured data quality for these concepts for two cohorts (HBP screening and HBP diagnosed) from electronic health record (EHR) data, including four use cases (screening, nonpharmacologic interventions, pharmacologic interventions, and adverse events) for CDS. Results We identified 102,443 people with diagnosed and 58,990 with undiagnosed HBP. We found that 21/35 (60%) of required concept sets were unused or inaccurate, with only 259 (25.3%) of 1,101 codes used. Use cases showed high inclusion (0.9–11.2%), low exclusion (0–0.1%), and missing patient-specific context (up to 65.6%), leading to data in 2/4 use cases being insufficient for accurate alerting. Discussion Data quality from the EHR required to implement recommendations for HBP is highly inconsistent, reflecting a fragmented health care system and incomplete implementation of standard terminologies and workflows. Although imperfect, data were deemed adequate for two test use cases. Conclusion Current data quality allows for further development of patient-facing FHIR HBP tools, but extensive validation and testing is required to assure precision and avoid unintended consequences.


2010 ◽  
Vol 4 (1) ◽  
pp. 278-290 ◽  
Author(s):  
Robert Greenes ◽  
Meryl Bloomrosen ◽  
Nancy E. Brown-Connolly ◽  
Clayton Curtis ◽  
Don E Detmer ◽  
...  

The Morningside Initiative is a public-private activity that has evolved from an August, 2007, meeting at the Morningside Inn, in Frederick, MD, sponsored by the Telemedicine and Advanced Technology Research Center (TATRC) of the US Army Medical Research Materiel Command. Participants were subject matter experts in clinical decision support (CDS) and included representatives from the Department of Defense, Veterans Health Administration, Kaiser Permanente, Partners Healthcare System, Henry Ford Health System, Arizona State University, and the American Medical Informatics Association (AMIA). The Morningside Initiative was convened in response to the AMIA Roadmap for National Action on Clinical Decision Support and on the basis of other considerations and experiences of the participants. Its formation was the unanimous recommendation of participants at the 2007 meeting which called for creating a shared repository of executable knowledge for diverse health care organizations and practices, as well as health care system vendors. The rationale is based on the recognition that sharing of clinical knowledge needed for CDS across organizations is currently virtually non-existent, and that, given the considerable investment needed for creating, maintaining and updating authoritative knowledge, which only larger organizations have been able to undertake, this is an impediment to widespread adoption and use of CDS. The Morningside Initiative intends to develop and refine (1) an organizational framework, (2) a technical approach, and (3) CDS content acquisition and management processes for sharing CDS knowledge content, tools, and experience that will scale with growing numbers of participants and can be expanded in scope of content and capabilities. Intermountain Healthcare joined the initial set of participants shortly after its formation. The efforts of the Morningside Initiative are intended to serve as the basis for a series of next steps in a national agenda for CDS. It is based on the belief that sharing of knowledge can be highly effective as is the case in other competitive domains such as genomics. Participants in the Morningside Initiative believe that a coordinated effort between the private and public sectors is needed to accomplish this goal and that a small number of highly visible and respected health care organizations in the public and private sector can lead by example. Ultimately, a future collaborative knowledge sharing organization must have a sustainable long-term business model for financial support.


2021 ◽  
Author(s):  
Yuan Lu ◽  
Edward R. Melnick ◽  
Harlan M. Krumholz

AbstractDespite considerable progress in addressing cardiovascular disease (CVD) over the past 50 years, there remain many gaps in CVD care quality. Multiple missed opportunities have been identified at every step in the prevention and treatment of CVD, such as failure to make risk factor modifications, failure to diagnose CVD, and failure to use proper evidence-based treatments. With the digital transformation of medicine and advances in health information technology, clinical decision support (CDS) tools offer promise to enhance the efficiency and effectiveness of cardiovascular care delivery. Yet, to date, the promise of CDS delivering scalable and sustained value for patient care in clinical practice has not been realized. Here, we review evidence on key emerging questions around the development, implementation, and regulation of CDS with a focus on CVD. We first review evidence on the effectiveness of CDS on patient health and health delivery outcomes related to CVD and features predictive of effectiveness. We then review the barriers encountered during CDS implementation in cardiovascular care with a focus on unintended consequences and strategies to promote successful implementation. Finally, we review the current legal and regulatory environment of CDS with specific examples for CVD.


2019 ◽  
Vol 10 (05) ◽  
pp. 810-819
Author(s):  
Evan W. Orenstein ◽  
Naveen Muthu ◽  
Asli O. Weitkamp ◽  
Daria F. Ferro ◽  
Mike D. Zeidlhack ◽  
...  

AbstractClinical decision support (CDS) systems delivered through the electronic health record are an important element of quality and safety initiatives within a health care system. However, managing a large CDS knowledge base can be an overwhelming task for informatics teams. Additionally, it can be difficult for these informatics teams to communicate their goals with external operational stakeholders and define concrete steps for improvement. We aimed to develop a maturity model that describes a roadmap toward organizational functions and processes that help health care systems use CDS more effectively to drive better outcomes. We developed a maturity model for CDS operations through discussions with health care leaders at 80 organizations, iterative model development by four clinical informaticists, and subsequent review with 19 health care organizations. We ceased iterations when feedback from three organizations did not result in any changes to the model. The proposed CDS maturity model includes three main “pillars”: “Content Creation,” “Analytics and Reporting,” and “Governance and Management.” Each pillar contains five levels—advancing along each pillar provides CDS teams a deeper understanding of the processes CDS systems are intended to improve. A “roof” represents the CDS functions that become attainable after advancing along each of the pillars. Organizations are not required to advance in order and can develop in one pillar separately from another. However, we hypothesize that optimal deployment of preceding levels and advancing in tandem along the pillars increase the value of organizational investment in higher levels of CDS maturity. In addition to describing the maturity model and its development, we also provide three case studies of health care organizations using the model for self-assessment and determine next steps in CDS development.


2013 ◽  
Vol 46 (2) ◽  
pp. 52
Author(s):  
CHRISTOPHER NOTTE ◽  
NEIL SKOLNIK

Sign in / Sign up

Export Citation Format

Share Document