electrographic seizure
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Auriana Irannejad ◽  
Ganne Chaitanya ◽  
Emilia Toth ◽  
Diana Pizarro ◽  
Sandipan Pati

Accurate mapping of the seizure onset zone (SOZ) is critical to the success of epilepsy surgery outcomes. Epileptogenicity index (EI) is a statistical method that delineates hyperexcitable brain regions involved in the generation and early propagation of seizures. However, EI can overestimate the SOZ for particular electrographic seizure onset patterns. Therefore, using direct cortical stimulation (DCS) as a probing tool to identify seizure generators, we systematically evaluated the causality of the high EI nodes (>0.3) in replicating the patient's habitual seizures. Specifically, we assessed the diagnostic yield of high EI nodes, i.e., the proportion of high EI nodes that evoked habitual seizures. A retrospective single-center study that included post-stereo encephalography (SEEG) confirmed TLE patients (n = 37) that had all high EI nodes stimulated, intending to induce a seizure. We evaluated the nodal responses (true and false responder rate) to stimulation and correlated with electrographic seizure onset patterns (hypersynchronous-HYP and low amplitude fast activity patterns-LAFA) and clinically defined SOZ. The ictogenicity (i.e., the propensity to induce the patient's habitual seizure) of a high EI node was only 44.5%. The LAFA onset pattern had a significantly higher response rate to DCS (i.e., higher evoked seizures). The concordance of an evoked habitual seizure with a clinically defined SOZ with good outcomes was over 50% (p = 0.0025). These results support targeted mapping of SOZ in LAFA onset patterns by performing DCS in high EI nodes to distinguish seizure generators (true responders) from hyperexcitable nodes that may be involved in early propagation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mitchell A. Frankel ◽  
Mark J. Lehmkuhle ◽  
Mark C. Spitz ◽  
Blake J. Newman ◽  
Sindhu V. Richards ◽  
...  

Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography (EEG) sensor. Four Epilog sensors are combined as part of Epitel's Remote EEG Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring. REMI is designed to provide comprehensive spatial EEG recordings that can be administered by non-specialized medical personnel in any medical center. The purpose of this study was to determine how accurate epileptologists are at remotely reviewing Epilog sensor EEG in the 10-channel “REMI montage,” with and without seizure detection support software. Three board certified epileptologists reviewed the REMI montage from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists randomly reviewed the same datasets with and without clinical decision support annotations from an automated seizure detection algorithm tuned to be highly sensitive. Blinded consensus review of unannotated Epilog EEG in the REMI montage detected people who were experiencing electrographic seizure activity with 90% sensitivity and 90% specificity. Consensus detection of individual focal onset seizures resulted in a mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002 false positives per hour (FP/h) of data. With algorithm seizure detection annotations, the consensus review mean sensitivity improved to 68% with a slight increase in FDR (0.005 FP/h). As seizure detection software, the automated algorithm detected people who were experiencing electrographic seizure activity with 100% sensitivity and 70% specificity, and detected individual focal onset seizures with a mean sensitivity of 90% and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists' ability to blindly review EEG from four Epilog sensors in the REMI montage, and the results demonstrate the clinical potential to accurately identify patients experiencing electrographic seizures. Additionally, the automated algorithm shows promise as clinical decision support software to detect discrete electrographic seizures in individual records as accurately as FDA-cleared predicates.


2021 ◽  
Vol 122 ◽  
pp. 108228
Author(s):  
Rima El Atrache ◽  
Eleonora Tamilia ◽  
Marta Amengual-Gual ◽  
Fatemeh Mohammadpour Touserkani ◽  
Yonghua Yang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Fang Zhang ◽  
Yufang Yang ◽  
Yongte Zheng ◽  
Junming Zhu ◽  
Ping Wang ◽  
...  

Responsive neural stimulation (RNS) is considered a promising neural modulation therapy for refractory epilepsy. Combined stimulation on different targets may hold great promise for improving the efficacy of seizure control since neural activity changed dynamically within associated brain targets in the epileptic network. Three major issues need to be further explored to achieve better efficacy of combined stimulation: (1) which nodes within the epileptogenic network should be chosen as stimulation targets? (2) What stimulus frequency should be delivered to different targets? and (3) Could the efficacy of RNS for seizure control be optimized by combined different stimulation targets together? In our current study, Granger causality (GC) method was applied to analyze epileptogenic networks for finding key targets of RNS. Single target stimulation (100 μA amplitude, 300 μs pulse width, 5s duration, biphasic, charge-balanced) with high frequency (130 Hz, HFS) or low frequency (5 Hz, LFS) was firstly delivered by our lab designed RNS systems to CA3, CA1, subiculum (SUB) of hippocampi, and anterior nucleus of thalamus (ANT). The efficacy of combined stimulation with different groups of frequencies was finally assessed to find out better combined key targets with optimal stimulus frequency. Our results showed that stimulation individually delivered to SUB and CA1 could shorten the average duration of seizures. Different stimulation frequencies impacted the efficacy of seizure control, as HFS delivered to CA1 and LFS delivered to SUB, respectively, were more effective for shortening the average duration of electrographic seizure in Sprague-Dawley rats (n = 3). Moreover, the synchronous stimulation of HFS in CA1 combined with LFS in SUB reduced the duration of discharge significantly in rats (n = 6). The combination of responsive stimulation at different targets may be an inspiration to optimize stimulation therapy for epilepsy.


2021 ◽  
Author(s):  
James Luccarelli ◽  
Thomas H. McCoy ◽  
Ryan J. Horvath ◽  
Stephen J. Seiner ◽  
Michael E. Henry

2021 ◽  
Vol 15 ◽  
Author(s):  
Wade Barry ◽  
Sharanya Arcot Desai ◽  
Thomas K. Tcheng ◽  
Martha J. Morrell

The objective of this study was to explore using ECoG spectrogram images for training reliable cross-patient electrographic seizure classifiers, and to characterize the classifiers’ test accuracy as a function of amount of training data. ECoG channels in ∼138,000 time-series ECoG records from 113 patients were converted to RGB spectrogram images. Using an unsupervised spectrogram image clustering technique, manual labeling of 138,000 ECoG records (each with up to 4 ECoG channels) was completed in 320 h, which is an estimated 5 times faster than manual labeling without ECoG clustering. For training supervised classifier models, five random folds of data were created; with each fold containing 72, 18, and 23 patients’ data for model training, validation and testing respectively. Five convolutional neural network (CNN) architectures, including two with residual connections, were trained. Cross-patient classification accuracies and F1 scores improved with model complexity, with the shallowest 6-layer model (with ∼1.5 million trainable parameters) producing a class-balanced seizure/non-seizure classification accuracy of 87.9% on ECoG channels and the deepest ResNet50-based model (with ∼23.5 million trainable parameters) producing a classification accuracy of 95.7%. The trained ResNet50-based model additionally had 93.5% agreement in scores with an independent expert labeller. Visual inspection of gradient-based saliency maps confirmed that the models’ classifications were based on relevant portions of the spectrogram images. Further, by repeating training experiments with data from varying number of patients, it was found that ECoG spectrogram images from just 10 patients were sufficient to train ResNet50-based models with 88% cross-patient accuracy, while at least 30 patients’ data was required to produce cross-patient classification accuracies of >90%.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aliesha Griffin ◽  
Colleen Carpenter ◽  
Jing Liu ◽  
Rosalia Paterno ◽  
Brian Grone ◽  
...  

AbstractGenetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Local field potential recordings (LFP) were used to screen ∼3300 larvae. Phenotypes with unprovoked electrographic seizure activity (i.e., epilepsy) were identified in zebrafish lines for 8 genes; ARX, EEF1A, GABRB3, GRIN1, PNPO, SCN1A, STRADA and STXBP1. We also created an open-source database containing sequencing information, survival curves, behavioral profiles and representative electrophysiology data. We offer all zebrafish lines as a resource to the neuroscience community and envision them as a starting point for further functional analysis and/or identification of new therapies.


Author(s):  
Mitchell A. Frankel ◽  
Mark J. Lehmkuhle ◽  
Meagan Watson ◽  
Kirsten Fetrow ◽  
Lauren Frey ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. e1008731
Author(s):  
Viktor Sip ◽  
Julia Scholly ◽  
Maxime Guye ◽  
Fabrice Bartolomei ◽  
Viktor Jirsa

Intracranial electroencephalography is a standard tool in clinical evaluation of patients with focal epilepsy. Various early electrographic seizure patterns differing in frequency, amplitude, and waveform of the oscillations are observed. The pattern most common in the areas of seizure propagation is the so-called theta-alpha activity (TAA), whose defining features are oscillations in the θ − α range and gradually increasing amplitude. A deeper understanding of the mechanism underlying the generation of the TAA pattern is however lacking. In this work we evaluate the hypothesis that the TAA patterns are caused by seizures spreading across the cortex. To do so, we perform simulations of seizure dynamics on detailed patient-derived cortical surfaces using the spreading seizure model as well as reference models with one or two homogeneous sources. We then detect the occurrences of the TAA patterns both in the simulated stereo-electroencephalographic signals and in the signals of recorded epileptic seizures from a cohort of fifty patients, and we compare the features of the groups of detected TAA patterns to assess the plausibility of the different models. Our results show that spreading seizure hypothesis is qualitatively consistent with the evidence available in the seizure recordings, and it can explain the features of the detected TAA groups best among the examined models.


2021 ◽  
Author(s):  
Aliesha Griffin ◽  
Colleen Carpenter ◽  
Jing Liu ◽  
Rosalia Paterno ◽  
Brian Grone ◽  
...  

AbstractGenetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Phenotypes with unprovoked electrographic seizure activity (i.e., epilepsy) were identified in zebrafish lines for 8 genes; ARX, EEF1A, GABRB3, GRIN1, PNPO, SCN1A, STRADA and STXBP1. A unifying epilepsy classification scheme was developed based on local field potential recordings and blinded scoring from ~3300 larvae. We also created an open-source database containing sequencing information, survival curves, behavioral profiles and representative electrophysiology data. We offer all zebrafish lines as a resource to the neuroscience community and envision them as a starting point for further functional analysis and/or identification of new therapies.


Sign in / Sign up

Export Citation Format

Share Document