scholarly journals Modification of Enamel Surface Morphology and Strength Using Nd:YAG Laser with Proper and Safe Parameters

Author(s):  
Amera Alkaisi ◽  
Salma B.A. Abdo

Abstract Objective The aim of this study was to determine the effect of a Nd:YAG laser on enamel surface morphology and hardness using different energies and pulses. Materials and Methods Twenty freshly extracted mature teeth were collected and sectioned. An Nd:YAG laser operating at 1,064 nm wavelength and providing up to 9 nanosecond laser pulses (1 J), with a laser spot diameter of 0.8 mm and irradiated surface area of 3 × 3 mm2, was applied to carbon black-coated teeth. The samples were randomly divided into two main groups; each group comprised 20 samples, according to the treatment parameters. The first group was further divided into subgroups A, B1, C1, and D1 using the different energies of 0, 350, 450, and 550 mJ, respectively, with 1 pulse for B1, C1, and D1. The second group was subdivided into A, B2, C2, and D2 and treated with 200 mJ, 3, 4, and 6 pulses for subgroups B2, C2 and D2, respectively. Subgroup A was the same sample for both groups as control with 0 pulses and 0 energy. Morphological features and microhardness were evaluated after laser exposure. Statistical Analysis Analysis of variance (Kruskal–Wallis test) was used to compare all subgroups, followed by the Scheefy significant difference post hoc test to determine the highest significance of the subgroups. Alpha < 0.05 was set as significant. Results The changes in the surface morphology of the enamel included increased crystal sizes, cracks, fissures, and voids with increasing energies and pulses. In group 1, the microhardness was 405.6, 562.7, 612, and 637 for energies of 0, 350, 450, and 550 mJ, respectively. In group 2, the microhardness was 405.6, 673, 866, and 1,050 for 0, 3, 4, and 6 pulses, respectively. Conclusion The Nd:YAG laser is efficient for increasing the microhardness of the enamel surface with minimum morphological damage by applying low energy with more pulses.

2012 ◽  
Vol 14 (4) ◽  
pp. 333-337 ◽  
Author(s):  
Khurram Siraj ◽  
Muhammad Zakria Butt ◽  
Muhammad Khaleeq-Urrahman ◽  
Muhammad Shahid Rafique ◽  
Saima Rafique ◽  
...  

2021 ◽  
Vol 1022 ◽  
pp. 35-41
Author(s):  
Valeriy Romanov ◽  
Tuan Anh Nguyen ◽  
Nadezhda Shchedrina ◽  
Daria Lutoshina ◽  
Vladimir Mikhailovskii ◽  
...  

Coloring silver for decorative purposes and for applying identification marks is an important task. In this paper, we consider a method for coloring silver surfaces using VIS plasmonic response in laser-induced nanoparticles (NPs). An analysis was made of the resulted morphology and chemical composition of nanoparticles obtained with nanosecond laser pulses. The dependence of the size and distribution of silver NPs on the laser exposure parameters is determined. The developed color palette was characterized using colorimetric coordinates.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ádám László Nagy ◽  
Zsolt Tóth ◽  
Tamás Tarjányi ◽  
Nándor Tamás Práger ◽  
Zoltán Lajos Baráth

Abstract Background In this research the biomechanical properties of a bone model was examined. Porcine ribs are used as experimental model. The objective of this research was to investigate and compare the biomechanical properties of the bone model before and after implant placement. Methods The bone samples were divided in three groups, Group 1 where ALL-ON-FOUR protocol was used during pre-drilling and placing the implants, Group 2 where ALL-ON-FOUR protocol was used during pre-drilling, and implants were not placed, and Group 3 consisting of intact bones served as a control group. Static and dynamic loading was applied for examining the model samples. Kruskal–Wallis statistical test and as a post-hoc test Mann–Whitney U test was performed to analyze experimental results. Results According to the results of the static loading, there was no significant difference between the implanted and original ribs, however, the toughness values of the bones decreased largely on account of predrilling the bones. The analysis of dynamic fatigue measurements by Kruskal–Wallis test showed significant differences between the intact and predrilled bones. Conclusion The pre-drilled bone was much weaker in both static and dynamic tests than the natural or implanted specimens. According to the results of the dynamic tests and after a certain loading cycle the implanted samples behaved the same way as the control samples, which suggests that implantation have stabilized the skeletal bone structure.


2010 ◽  
Vol 97-101 ◽  
pp. 3803-3806
Author(s):  
Yong Xiang Hu ◽  
Heng Zhang ◽  
Zheng Qiang Yao

Laser interference micro-structuring is a relatively efficient and cost-effective technique for fabricating periodical micro-nano-structuring surfaces. The direct fabrication of sub-micron sized dot array on silicon was performed by four interfering nanosecond laser beams with a diffractive beam splitter. The mechanism to form the dot array was analyzed and it was found that the obtained conical dot array had a negative shape of the interference pattern of four laser beams. A second-order peak between two first-order peaks also occurred due to the liquid-solid expansion.


Sign in / Sign up

Export Citation Format

Share Document