scholarly journals Characterization of Severe Arterial Phase Respiratory Motion Artifact on Gadoxetate Disodium-Enhanced MRI – Assessment of Interrater Agreement and Reliability

Author(s):  
Kristina Ringe ◽  
Julian Luetkens ◽  
Rolf Fimmers ◽  
Renate Hammerstingl ◽  
Günter Layer ◽  
...  

Purpose To assess the interrater agreement and reliability of experienced abdominal radiologists in the characterization and grading of arterial phase gadoxetate disodium-related respiratory motion artifact on liver MRI. Materials and Methods This prospective multicenter study was initiated by the working group for abdominal imaging within the German Roentgen Society (DRG), and approved by the local IRB of each participating center. 11 board-certified radiologists independently reviewed 40 gadoxetate disodium-enhanced liver MRI datasets. Motion artifacts in the arterial phase were assessed on a 5-point scale. Interrater agreement and reliability were calculated using the intraclass correlation coefficient (ICC) and Kendall coefficient of concordance (W), with p < 0.05 deemed significant. Results The ICC for interrater agreement and reliability were 0.983 (CI 0.973 – 0.990) and 0.985 (CI 0.978 – 0.991), respectively (both p < 0.0001), indicating excellent agreement and reliability. Kendall’s W for interrater agreement was 0.865. A severe motion artifact, defined as a mean motion score ≥ 4 in the arterial phase was observed in 12 patients. In these specific cases, a motion score ≥ 4 was assigned by all readers in 75 % (n = 9/12 cases). Conclusion Differentiation and grading of arterial phase respiratory motion artifact is possible with a high level of inter-/intrarater agreement and interrater reliability, which is crucial for assessing the incidence of this phenomenon in larger multicenter studies. Key Points  Citation Format

2020 ◽  
Vol 30 (11) ◽  
pp. 5923-5932
Author(s):  
M.-L. Kromrey ◽  
D. Tamada ◽  
H. Johno ◽  
S. Funayama ◽  
N. Nagata ◽  
...  

Abstract Objectives To reveal the utility of motion artifact reduction with convolutional neural network (MARC) in gadoxetate disodium–enhanced multi-arterial phase MRI of the liver. Methods This retrospective study included 192 patients (131 men, 68.7 ± 10.3 years) receiving gadoxetate disodium–enhanced liver MRI in 2017. Datasets were submitted to a newly developed filter (MARC), consisting of 7 convolutional layers, and trained on 14,190 cropped images generated from abdominal MR images. Motion artifact for training was simulated by adding periodic k-space domain noise to the images. Original and filtered images of pre-contrast and 6 arterial phases (7 image sets per patient resulting in 1344 sets in total) were evaluated regarding motion artifacts on a 4-point scale. Lesion conspicuity in original and filtered images was ranked by side-by-side comparison. Results Of the 1344 original image sets, motion artifact score was 2 in 597, 3 in 165, and 4 in 54 sets. MARC significantly improved image quality over all phases showing an average motion artifact score of 1.97 ± 0.72 compared to 2.53 ± 0.71 in original MR images (p < 0.001). MARC improved motion scores from 2 to 1 in 177/596 (29.65%), from 3 to 2 in 119/165 (72.12%), and from 4 to 3 in 34/54 sets (62.96%). Lesion conspicuity was significantly improved (p < 0.001) without removing anatomical details. Conclusions Motion artifacts and lesion conspicuity of gadoxetate disodium–enhanced arterial phase liver MRI were significantly improved by the MARC filter, especially in cases with substantial artifacts. This method can be of high clinical value in subjects with failing breath-hold in the scan. Key Points • This study presents a newly developed deep learning–based filter for artifact reduction using convolutional neural network (motion artifact reduction with convolutional neural network, MARC). • MARC significantly improved MR image quality after gadoxetate disodium administration by reducing motion artifacts, especially in cases with severely degraded images. • Postprocessing with MARC led to better lesion conspicuity without removing anatomical details.


2015 ◽  
Vol 204 (6) ◽  
pp. 1220-1227 ◽  
Author(s):  
So Yeon Kim ◽  
Seong Ho Park ◽  
En-Haw Wu ◽  
Z. Jane Wang ◽  
Thomas A. Hope ◽  
...  

Author(s):  
Lennart Well ◽  
Vanessa Rausch ◽  
Gerhard Adam ◽  
Frank Henes ◽  
Peter Bannas

Purpose Varying frequencies (5 – 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results. Materials and Methods Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were < 3. Potential risk factors for TSM were evaluated via logistic regression analysis. Results For gadoxetate disodium, the mean score for respiratory motion artifacts was significantly higher in the arterial phase (2.2 ± 0.9) compared to all other phases (1.6 ± 0.7) (p < 0.05). The frequency of TSM was significantly higher with gadoxetate disodium (n = 19; 21.1 %) than with gadobenate dimeglumine (n = 1; 1.1 %) (p < 0.001). The frequency of TSM at our institution is similar to some, but not all previously published findings. Logistic regression analysis did not show any significant correlation between TSM and risk factors (all p > 0.05). Conclusion We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM. Key Points:  Citation Format


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200887 ◽  
Author(s):  
Kristina I. Ringe ◽  
Christian von Falck ◽  
Hans-Jürgen Raatschen ◽  
Frank Wacker ◽  
Jan Hinrichs

2014 ◽  
Vol 203 (4) ◽  
pp. 796-802 ◽  
Author(s):  
Matthew S. Davenport ◽  
Mustafa R. Bashir ◽  
Jason A. Pietryga ◽  
Joseph T. Weber ◽  
Shokoufeh Khalatbari ◽  
...  

2019 ◽  
Vol 30 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Marco Dioguardi Burgio ◽  
Thomas Benseghir ◽  
Vincent Roche ◽  
Carmela Garcia Alba ◽  
Jean Baptiste Debry ◽  
...  

Author(s):  
Lennart Well ◽  
Julius Weinrich ◽  
Gerhard Adam ◽  
Peter Bannas

Background Gadoxetate disodium is an intracellular contrast agent for magnetic resonance imaging (MRI) of the liver. Recent publications revealed that injection of gadoxetate disodium can lead to imaging artifacts due to transient severe motion (TSM) in the arterial phase of contrast-enhanced liver MRI. In this review we present and discuss published frequencies of TSM, contrast injection and image acquisition protocols, potential risk factors, and proposed strategies to avoid or minimize the effects of TSM. Method Two reviewers independently searched the PubMed search engine for “transient severe motion artifact” and related terms. Reference lists of retrieved articles were also searched. The two reviewers selected in consensus nine studies that reported both frequencies of TSM and potential risk factors. Study data were extracted by both reviewers, and disagreement was resolved by consensus. Results and Conclusion TSM is caused by impaired breath-hold ability after gadoxetate disodium injection and occurs in 5 – 22 % of patients. The dose of applied contrast agent, repeated exposure to gadoxetate disodium, high BMI and pulmonary disease have been described as potential risk factors for TSM. However, there are only few concordant results on this topic and the pathophysiology of TSM has not been identified. Proposed strategies for the prevention of TSM are slow injection rates and low doses of diluted gadoxetate disodium. Accelerated and free-breathing MRI sequence protocols and breath-hold training may minimize the effects of TSM. Further prospective studies are needed to confirm these strategies and to identify the underlying mechanism of TSM. Key Points  Citation Format


Sign in / Sign up

Export Citation Format

Share Document