High-Resolution Chlorophyll Fluorescence Imaging Serves as a Non-Invasive Indicator to Monitor the Spatio-Temporal Variations of Metabolism during the Day-Night Cycle and during the Endogenous Rhythm in Continuous Light in the CAM PlantKalanchoë daigremontiana

Plant Biology ◽  
2002 ◽  
Vol 4 (6) ◽  
pp. 671-681 ◽  
Author(s):  
U. Rascher ◽  
U. Lüttge
Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 820
Author(s):  
Werner B. Herppich ◽  
Marco Maggioni ◽  
Susanne Huyskens-Keil ◽  
Tina Kabelitz ◽  
Karin Hassenberg

For fresh-cut salad production, hot-water treatment (HWT) needs optimization in terms of temperature and duration to guarantee a gentle and non-stressing processing to fully retain product quality besides an effective sanitation. One major initial target of heat treatment is photosynthesis, making it a suitable and sensitive marker for HWT effects. Chlorophyll fluorescence imaging (CFI) is a rapid and non-invasive tool to evaluate respective plant responses. Following practical applications in fruit salad production, apples of colored and of green-ripe cultivars (‘Braeburn’, ‘Fuji’, ‘Greenstar’, ‘Granny Smith’), obtained from a local fruit salad producer, were hot-water treated from 44 to 70 °C for 30 to 300 s. One day after HWT and after 7 days of storage at 4 °C, CFI and remission spectroscopy were applied to evaluating temperature effects on photosynthetic activity, on contents of fruit pigments (chlorophylls, anthocyanins), and on various relevant quality parameters of intact apples. In ‘Braeburn’ apples, short-term HWT at 55 °C for 30 to 120 s avoided any heat injuries and quality losses. The samples of the other three cultivars turned out to be less sensitive and may be short-term heat-treated at temperatures of up to 60 °C for the same time. CFI proved to be a rapid, sensitive, and effective tool for process optimization of apples, closely reflecting the cultivar- or batch-specificity of heat effects on produce photosynthesis.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


2017 ◽  
Vol 56 (35) ◽  
pp. 9762 ◽  
Author(s):  
Heng Wang ◽  
Xiangjie Qian ◽  
Lan Zhang ◽  
Sailong Xu ◽  
Haifeng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document