Evaluation of cryopreserved human hepatocytes for functional studies in vitro and in a small animal model

2005 ◽  
Vol 43 (05) ◽  
Author(s):  
KL Streetz ◽  
M Elazar ◽  
S Levenberg ◽  
MS Chua ◽  
D Wang ◽  
...  
2009 ◽  
Vol 55 (10) ◽  
pp. 1783-1793 ◽  
Author(s):  
Leen Lootens ◽  
Philip Meuleman ◽  
Oscar J Pozo ◽  
Peter Van Eenoo ◽  
Geert Leroux-Roels ◽  
...  

Abstract Background: Adequate detection of designer steroids in the urine of athletes is still a challenge in doping control analysis and requires knowledge of steroid metabolism. In this study we investigated whether uPA+/+-SCID mice carrying functional primary human hepatocytes in their liver would provide a suitable alternative small animal model for the investigation of human steroid metabolism in vivo. Methods: A quantitative method based on liquid chromatography–tandem mass spectrometry (LC-MS/MS) was developed and validated for the urinary detection of 7 known methandienone metabolites. Application of this method to urine samples from humanized mice after methandienone administration allowed for comparison with data from in vivo human samples and with reported methandienone data from in vitro hepatocyte cultures. Results: The LC-MS/MS method validation in mouse and human urine indicated good linearity, precision, and recovery. Using this method we quantified 6 of 7 known human methandienone metabolites in the urine of chimeric mice, whereas in control nonchimeric mice we detected only 2 metabolites. These results correlated very well with methandienone metabolism in humans. In addition, we detected 4 isomers of methandienone metabolites in both human and chimeric mouse urine. One of these isomers has never been reported before. Conclusions: The results of this proof-of-concept study indicate that the human liver–uPA+/+-SCID mouse appears to be a suitable small animal model for the investigation of human-type metabolism of anabolic steroids and possibly also for other types of drugs and medications. .


2021 ◽  
Vol 12 ◽  
Author(s):  
Daoqun Li ◽  
Zulqarnain Baloch ◽  
Yang Zhao ◽  
Lei Bai ◽  
Xing Wang ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the most common cause of Kaposi’s sarcoma (KS) and other malignant growths in humans. However, the lack of a KSHV-infected small animal model has hampered understanding of the mechanisms of KSHV infection, virus replication, pathogenesis, and persistence. This study was designed to explore the susceptibility of tree shrews as a possible KSHV-infected small animal model. A recombinant GFP (latent)/RFP (lytic)-positive rKSHV.219 strain was used to infect primary cells cultured from different tissues of tree shrews as an in vitro model and adult tree shrews as an in vivo model. KSHV latent nuclear antigen (LANA) and DNA were successfully detected in primary cells of tree shrews. Among them, tree shrew kidney epithelial cells (TSKEC) were the most susceptible cells to KSHV infection compared to other cells. KSHV genomic DNA, mRNA, and KSHV-specific proteins were readily detected in the TSKEC cultured up to 32 dpi. Moreover, KSHV DNA and mRNA transcription were also readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of tree shrews infected with KSHV. Haematoxylin and eosin (HE) staining showed lymphocyte infiltration, lymphoid tissue focal aggregation, alveolar wall thickening, hepatocyte edema, hepatic necrosis in the spleen, lung, and liver of KSHV-infected animals. Additionally, immune-histochemical (IHC) staining showed that LANA or ORF62-positive cells were present in the spleen, lung, liver, and kidney of KSHV-infected tree shrews. Here, we have successfully established in vitro and in vivo KSHV latent infection in tree shrews. This small animal model is not only useful for studying the pathogenesis of KSHV in vivo but can also be a useful model to study transmission routes of viral infection and a useful platform to characterize the novel therapeutics against KSHV.


2021 ◽  
Vol 8 (1) ◽  
pp. e000879
Author(s):  
Premila Devi Leiphrakpam ◽  
Hannah R Weber ◽  
Tobi Ogun ◽  
Keely L Buesing

BackgroundAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a lethal disease with limited therapeutic options and an unacceptably high mortality rate. Understanding the complex pathophysiological processes involved in the development of ALI/ARDS is critical for developing novel therapeutic strategies. Smoke inhalation (SI) injury is the leading cause of morbidity and mortality in patients with burn-associated ALI/ARDS; however, to our knowledge few reliable, reproducible models are available for pure SI animal model to investigate therapeutic options for ALI/ARDS without the confounding variables introduced by cutaneous burn or other pathology.ObjectiveTo develop a small animal model of pure SI-induced ALI and to use this model for eventual testing of novel therapeutics for ALI.MethodsRats were exposed to smoke using a custom-made smoke generator. Peripheral oxygen saturation (SpO2), heart rate, arterial blood gas, and chest X-ray (CXR) were measured before and after SI. Wet/dry weight (W/D) ratio, lung injury score and immunohistochemical staining of cleaved caspase 3 were performed on harvested lung tissues of healthy and SI animals.ResultsThe current study demonstrates the induction of ALI in rats after SI as reflected by a significant, sustained decrease in SpO2 and the development of diffuse bilateral pulmonary infiltrates on CXR. Lung tissue of animals exposed to SI showed increased inflammation, oedema and apoptosis as reflected by the increase in W/D ratio, injury score and cleaved caspase 3 level of the harvested tissues compared with healthy animals.ConclusionWe have successfully developed a small animal model of pure SI-induced ALI. This model is offered to the scientific community as a reliable model of isolated pulmonary SI-induced injury without the confounding variables of cutaneous injury or other systemic pathology to be used for study of novel therapeutics or other investigation.


2015 ◽  
Vol 22 (6) ◽  
pp. 468-475 ◽  
Author(s):  
WeiLi Chen ◽  
Yuan Wu ◽  
Akira Shimizu ◽  
YinLong Lian ◽  
Masayuki Tasaki ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Myeongsu Seong ◽  
NoSoung Myoung ◽  
Songhyun Lee ◽  
Hyeryun Jeong ◽  
Sang-Youp Yim ◽  
...  

The cancer field effect (CFE) has been highlighted as one of indirect indications for tissue variations that are insensitive to conventional diagnostic techniques. In this research, we had a hypothesis that chemotherapy for breast cancer would affect skin biochemical compositions that would be reflected by Raman spectral changes. We used a fiber-optic probe-based Raman spectroscopy to perform preliminary animal experiments to validate the hypothesis. Firstly, we verified the probing depth of the fiber-optic probe (~800 μm) using a simple intravenous fat emulsion-filled phantom having a silicon wafer at the bottom inside a cuvette. Then, we obtained Raman spectra during breast cancer treatment by chemotherapy from a small animal model in longitudinal manner. Our results showed that the treatment causes variations of biochemical compositions in the skin. For further validation, the Raman spectra will have to be collected from more populations and spectra will need to be compared with immunohistochemistry of the breast tissue.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Liang Cui ◽  
Jue Hou ◽  
Jinling Fang ◽  
Yie Hou Lee ◽  
Vivian Vasconcelos Costa ◽  
...  

ABSTRACT Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend—most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly increased the challenges in the study of dengue pathogenesis and the development of therapeutics. Metabolomics provides global views of small-molecule metabolites and is a useful tool for finding metabolic pathways related to disease processes. Here, we conducted a serum metabolomics study on a model using humanized mice with dengue infection that had significant levels of human platelets, monocytes/macrophages, and hepatocytes. Forty-eight differential metabolites were identified, and the underlying perturbed metabolic pathways are quite similar to the pathways found to be altered in dengue patients in previous metabolomics studies, indicating that humanized mice could be a highly relevant small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics.


2007 ◽  
Vol 52 (4) ◽  
pp. 1001-1012 ◽  
Author(s):  
Michael E Kelly ◽  
Elisabeth Schültke ◽  
Stephan Fiedler ◽  
Christian Nemoz ◽  
Raphael Guzman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document