Closure of Fetoscopic Access Sites with Amniotic Extracellular Matrix Scaffolds in an In Vivo Model

2006 ◽  
Vol 66 (S 01) ◽  
Author(s):  
N Ochsenbein-Kölble ◽  
J Jani ◽  
G Verbist ◽  
L Lewi ◽  
K Marquardt ◽  
...  
2021 ◽  
Vol 22 (23) ◽  
pp. 12928
Author(s):  
Constança Júnior ◽  
Maria Narciso ◽  
Esther Marhuenda ◽  
Isaac Almendros ◽  
Ramon Farré ◽  
...  

Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.


2016 ◽  
Vol 45 ◽  
pp. 155-168 ◽  
Author(s):  
Angela Papalamprou ◽  
Chia Wei Chang ◽  
Natalia Vapniarsky ◽  
Alycia Clark ◽  
Naomi Walker ◽  
...  

2015 ◽  
Vol 33 (7) ◽  
pp. 1015-1023 ◽  
Author(s):  
Benedikt L. Proffen ◽  
Gabriel S. Perrone ◽  
Braden C. Fleming ◽  
Jakob T. Sieker ◽  
Joshua Kramer ◽  
...  

2002 ◽  
Vol 30 (2) ◽  
pp. 163-167 ◽  
Author(s):  
H. R. Lijnen

Clinical complications of atherosclerosis are often triggered by the rupture of unstable plaques, while thinning of the atherosclerotic vessel wall owing to elastin and collagen degradation and media necrosis may result in aneurysm formation and bleeding. Proteolysis, mediated via the plasminogen/ plasmin and/or matrix metalloproteinase (MMP) systems may contribute to neovascularization and rupture of plaques, or to ulceration and rupture of aneurysms. In an in vivo model of atherosclerosis, using mice that had a combined deficiency of apolipoprotein E (ApoE) and urokinase-type plasminogen activator (u-PA) and that were maintained on a cholesterol-rich diet, it was observed that u-PA deficiency protects against aneurysm formation. This was explained by the findings that plasmin, generated from plasminogen by u-PA, activates several macrophage-secreted proMMPs (e.g. proMMP-3, −9, −12 and −13), which in turn cause extracellular matrix degradation. A potential role for MMP-3 (stromelysin-1) was confirmed in a subsequent study using mice with a combined deficiency of ApoE and MMP-3, that were kept on a cholesterol-rich diet. The results suggest that MMP-3 contributes to plaque destabilization, possibly by degrading extracellular matrix components, but also promotes aneurysm formation by degrading the elastic lamina. These effects may be mediated by MMP-3 directly or by activation of other proMMPs or other (proteolytic) systems. A functional role of MMPs is further supported by the finding that deficiency in TIMP-1 (tissue inhibitor of MMPs type 1) reduces atherosclerotic plaque size but enhances aneurysm formation. Taken together, these results suggest that u-PA has an important role in the structural integrity of the atherosclerotic vessel wall, which is likely to involve triggering the activation of MMPs and, furthermore, they suggest that increased u-PA levels are a risk factor for aneurysm formation.


Author(s):  
U Lichtenauer ◽  
PL Schmid ◽  
A Oßwald ◽  
I Renner-Müller ◽  
M Reincke ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document