A Short-Term Trial of Butyrate to Stimulate Fetal-Globin-Gene Expression in the β-Globin Disorders

1993 ◽  
Vol 328 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Susan P. Perrine ◽  
Gordon D. Ginder ◽  
Douglas V. Faller ◽  
George H. Dover ◽  
Tohru Ikuta ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 755
Author(s):  
Nur Atikah Zakaria ◽  
Md Asiful Islam ◽  
Wan Zaidah Abdullah ◽  
Rosnah Bahar ◽  
Abdul Aziz Mohamed Yusoff ◽  
...  

Thalassemia, an inherited quantitative globin disorder, consists of two types, α– and β–thalassemia. β–thalassemia is a heterogeneous disease that can be asymptomatic, mild, or even severe. Considerable research has focused on investigating its underlying etiology. These studies found that DNA hypomethylation in the β–globin gene cluster is significantly related to fetal hemoglobin (HbF) elevation. Histone modification reactivates γ-globin gene expression in adults and increases β–globin expression. Down-regulation of γ–globin suppressor genes, i.e., BCL11A, KLF1, HBG-XMN1, HBS1L-MYB, and SOX6, elevates the HbF level. β–thalassemia severity is predictable through FLT1, ARG2, NOS2A, and MAP3K5 gene expression. NOS2A and MAP3K5 may predict the β–thalassemia patient’s response to hydroxyurea, a HbF-inducing drug. The transcription factors NRF2 and BACH1 work with antioxidant enzymes, i.e., PRDX1, PRDX2, TRX1, and SOD1, to protect erythrocytes from oxidative damage, thus increasing their lifespan. A single β–thalassemia-causing mutation can result in different phenotypes, and these are predictable by IGSF4 and LARP2 methylation as well as long non-coding RNA expression levels. Finally, the coinheritance of β–thalassemia with α–thalassemia ameliorates the β–thalassemia clinical presentation. In conclusion, the management of β–thalassemia is currently limited to genetic and epigenetic approaches, and numerous factors should be further explored in the future.


1982 ◽  
Vol 8 (2) ◽  
pp. 163-178 ◽  
Author(s):  
Devi Vembu ◽  
Neal S. Young ◽  
Marcia Willing ◽  
Eve Church ◽  
Linda Sanders-Haigh ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (17) ◽  
pp. 3493-3501 ◽  
Author(s):  
Maria Amaya ◽  
Megha Desai ◽  
Merlin Nithya Gnanapragasam ◽  
Shou Zhen Wang ◽  
Sheng Zu Zhu ◽  
...  

Key Points Mi2β exerts a major part of its silencing effect on embryonic and fetal globin genes by positively regulating the BCL11A and KLF1 genes. Partial depletion of Mi2β induces increased γ-globin gene expression in primary human erythroid cells without impairing differentiation.


2000 ◽  
Vol 20 (15) ◽  
pp. 5581-5591 ◽  
Author(s):  
Daniel M. Cimbora ◽  
Dirk Schübeler ◽  
Andreas Reik ◽  
Joan Hamilton ◽  
Claire Francastel ◽  
...  

ABSTRACT DNA replication in the human β-globin locus is subject to long-distance regulation. In murine and human erythroid cells, the human locus replicates in early S phase from a bidirectional origin located near the β-globin gene. This Hispanic thalassemia deletion removes regulatory sequences located over 52 kb from the origin, resulting in replication of the locus from a different origin, a shift in replication timing to late S phase, adoption of a closed chromatin conformation, and silencing of globin gene expression in murine erythroid cells. The sequences deleted include nuclease-hypersensitive sites 2 to 5 (5′HS2-5) of the locus control region (LCR) plus an additional 27-kb upstream region. We tested a targeted deletion of 5′HS2-5 in the normal chromosomal context of the human β-globin locus to determine the role of these elements in replication origin choice and replication timing. We demonstrate that the 5′HS2-5-deleted locus initiates replication at the appropriate origin and with normal timing in murine erythroid cells, and therefore we conclude that 5′HS2-5 in the classically defined LCR do not control replication in the human β-globin locus. Recent studies also show that targeted deletion of 5′HS2-5 results in a locus that lacks globin gene expression yet retains an open chromatin conformation. Thus, the replication timing of the locus is closely correlated with nuclease sensitivity but not globin gene expression.


1991 ◽  
Vol 11 (9) ◽  
pp. 4690-4697 ◽  
Author(s):  
J G Glauber ◽  
N J Wandersee ◽  
J A Little ◽  
G D Ginder

A stable transfection assay was used to test the mechanism by which embryonic globin gene transcription is stimulated in adult erythroid cells exposed to butyric acid and its analogs. To test the appropriate expression and inducibility of chicken globin genes in murine erythroleukemia (MEL) cells, an adult chicken beta-globin gene construct was stably transfected. The chicken beta-globin gene was found to be coregulated with the endogenous adult mouse alpha-globin gene following induction of erythroid differentiation of the transfected MEL cells by incubation with either 2% dimethyl sulfoxide (DMSO) or 1 mM sodium butyrate (NaB). In contrast, a stably transfected embryonic chicken beta-type globin gene, rho, was downregulated during DMSO-induced MEL cell differentiation. However, incubation with NaB, which induces MEL cell differentiation, or alpha-amino butyrate, which does not induce differentiation of MEL cells, resulted in markedly increased levels of transcription from the stably transfected rho gene. Analysis of histone modification showed that induction of rho gene expression was not correlated with increased bulk histone acetylation. A region of 5'-flanking sequence extending from -569 to -725 bp upstream of the rho gene cap site was found to be required for both downregulation of rho gene expression during DMSO-induced differentiation and upregulation by treatment with NaB or alpha-amino butyrate. These data are support for a novel mechanism by which butyrate compounds can alter cellular gene expression through specific DNA sequences. The results reported here are also evidence that 5'-flanking sequences are involved in the suppression of embryonic globin gene expression in terminally differentiated adult erythroid cells.


Sign in / Sign up

Export Citation Format

Share Document