Anticipations and Time-Varying Modeling in Adaptive Control System

Author(s):  
Dipak Basu ◽  
Victoria Miroshnik
Robotica ◽  
1994 ◽  
Vol 12 (6) ◽  
pp. 553-561 ◽  
Author(s):  
D. T. Pham ◽  
S. J. Oh

SummaryThis paper describes an adaptive control system for an articulated robot with n joints carrying a variable load. The robot is a complex nonlinear time-varying MIMO plant with dynamic interaction between its inputs and outputs. However, the design of the control system is relatively straightforward and does not require any prior knowledge about the plant. This is because the control system is based on using neural networks which can capture the dynamic characteristics of the plant automatically. Three neural networks are employed in total, the first to learn the dynamics of the robot, the second to model its inverse dynamics and the third, a copy of the second neural network, to control the robot.


1996 ◽  
Vol 118 (1) ◽  
pp. 67-76 ◽  
Author(s):  
E. Lu ◽  
J. Ni ◽  
S. M. Wu

An integrated lattice filter adaptive control system is developed for the control of time-varying CMM structural vibrations. An efficient algorithm is developed to provide a link between the adaptive lattice filter and the minimum variance control by directly utilizing the lattice filter parameters at time t − 1 for control. The approach avoids the conversion to system parameters and is therefore computationally efficient for applications of real time control. To fully utilize the benefit of the lattice filter, a heuristic criterion for on-line order determination is developed using the lattice filter parameters. With a linear computational cost, the developed algorithm will perform on-line system order determination, parameter tracking, and control calculation at each sampling instance. The simulation result shows that the approximation of output prediction is reasonable and the integrated lattice filter adaptive control can reduce the system settling time by 82 percent as compared with no control.


Sign in / Sign up

Export Citation Format

Share Document