Real-Time Water Treatment Process Control with Artificial Neural Networks

1999 ◽  
Vol 125 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Qing Zhang ◽  
Stephen J. Stanley
2001 ◽  
Vol 28 (S1) ◽  
pp. 26-35 ◽  
Author(s):  
C W Baxter ◽  
Q Zhang ◽  
S J Stanley ◽  
R Shariff ◽  
R -RT Tupas ◽  
...  

To improve drinking water quality while reducing operating costs, many drinking water utilities are investing in advanced process control and automation technologies. The use of artificial intelligence technologies, specifically artificial neural networks, is increasing in the drinking water treatment industry as they allow for the development of robust nonlinear models of complex unit processes. This paper highlights the utility of artificial neural networks in water quality modelling as well as drinking water treatment process modelling and control through the presentation of several case studies at two large-scale water treatment plants in Edmonton, Alberta.Key words: artificial neural networks, water treatment process control, water treatment modelling.


1999 ◽  
Vol 38 (4-6) ◽  
pp. 373-382 ◽  
Author(s):  
Sabine Göb ◽  
Esther Oliveros ◽  
Stefan H. Bossmann ◽  
André M. Braun ◽  
Roberto Guardani ◽  
...  

2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


Sign in / Sign up

Export Citation Format

Share Document