Activated Sludge Process Modification for Sludge Yield Reduction Using Pulp and Paper Wastewater

2006 ◽  
Vol 132 (9) ◽  
pp. 1019-1027 ◽  
Author(s):  
Talat Mahmood ◽  
Allan Elliott
1987 ◽  
Vol 19 (5-6) ◽  
pp. 981-992 ◽  
Author(s):  
W. Firk ◽  
N. Ghandehari

Conventional sand- and two-layer filtration is frequently put into action for the purpose of advanced wastewater treatment after low-loaded activated sludge systems. However, the effectiveness of this conventional filter concerning the biological content which is difficult to degrade (measured by COD) is extremely low - and the costs too high. In direct comparison, modifying the filters to a biologically intensified system, brings about a substantial increase in efficiency while costing very little more. The investigations of the authors for the optimization of the whole system, consisting of an activated sludge process and a biologically intensified filter, led to the fact that for the requirements of advanced treatment, the size of the activated sludge stage can be substantially reduced, without the effectiveness of the system as a whole being affected. In the field of normal requirements (national effluent standards) and comparable low influx concentrations, biologically intensified filtration can be combined with a high-loaded activated sludge process of SLR up to 5 kg BOD5/(kg MLSS.d). The area required for the construction of the system is under 50% compared to the conventional one-stage activated sludge system. At higher influx concentrations the simultaneous addition of precipitants/flocculants to the high-loaded activated sludge stage, leads to substantial improvement of the effluent of the whole system and simultaneously to a distinct phosphorus elimination. This process modification is greatly advantageous, especially for densely populated lake areas. The oxygen supply system of the filter has a key function in connection with the influent concentration and the loading of the biological stage.


2008 ◽  
Vol 136 ◽  
pp. S31-S32 ◽  
Author(s):  
S. Yan ◽  
S. Bala Subramanian ◽  
R.D. Tyagi ◽  
R.Y. Surampalli

2016 ◽  
Vol 6 (02) ◽  
Author(s):  
Andri Taufick Rizaluddin ◽  
Sri Purwati

As the effluent quality standards for industrial wastewater are becoming more stringent, it is important for the industry to improve their wastewater treatment efficiency. The research about potential of cellulase application in the activated sludge process has been done. Theoritically, the addition of cellulase was required to support the activity of microorganism on the activated sludge. Since cellulose is the major organic pollutant component in the wastewater, it was expected that cellulase addition could improve the performance of activated sludge process. The experiments were conducted in a continuous process and consisted of two treatments which were with and without activated sludge at about 2400 mg MLVSS/L. The variations in each treatment were the enzyme dosages of 0; 0.2; 0.5; and 0.7 unit/g COD, and the residence time of 4, 8, 12, and 24 hours. The experiment result showed that the addition of cellulase can increase COD and BOD reduction compared to the treatment without enzymes. The highest COD reduction increment was 7.9% at the enzyme dosage of 0.2 unit/g COD and the residence time of 4 hours, while the highest BOD reduction increment was 14.6% at the same enzyme dosage and residence time. In conclusion, celullase application can be combined with the activated sludge process which will be effective in the high load organic wastewater. ABSTRAKDengan semakin ketatnya baku mutu air limbah, peningkatan efisiensi dalam pengolahan limbah menjadi sangat penting bagi industri. Penelitian ini dilakukan untuk mengetahui potensi selulase dan pengaruh laju pembebanan pada efektifitas pengolahan air limbah kertas sistem lumpur aktif. Secara teori, penambahan selulase diperlukan untuk membantu aktivitas mikroorganisme lumpur aktif. Dengan adanya kandungan selulosa sebagai komponen utama pencemar organik dalam air limbah, penambahan selulase diharapkan dapat meningkatkan kinerja proses lumpur aktif. Percobaan dilakukan dengan proses kontinyu yang terdiri dari dua perlakuan, yaitu tanpa dan dengan lumpur aktif pada MLVSS sekitar 2400 mg/L. Variasi pada setiap perlakuan berupa variasi dosis selulase (0; 0,2; 0,5; dan 0,7 unit/g COD) dan variasi laju pembebanan dengan mengatur waktu tinggal 4, 8, 12, dan 24 jam. Hasil percobaan menunjukkan bahwa perlakuan lumpur aktif dengan penambahan selulase dapat menghasilkan peningkatan reduksi COD dan BOD bila dibandingkan perlakuan tanpa menggunakan selulase. Peningkatan reduksi COD tertinggi mencapai 7,9% dengan perlakuan selulase dosis 0,2 unit/g COD dan waktu tinggal 4 jam, sedangkan peningkatan reduksi BOD tertinggi mencapai 14,6%. Perlakuan selulase dapat dikombinasikan dengan proses lumpur aktif yang berjalan efektif pada waktu tinggal yang lebih singkat atau pada beban tinggi.Kata kunci: selulase, lumpur aktif, chemical oxygen demand, biological oxygen demand


2015 ◽  
Vol 71 (8) ◽  
pp. 1173-1179 ◽  
Author(s):  
Göran Bäckman ◽  
Ulla Gytel

The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20–30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by the removal of detrimental substances and optimized nutrient dosage.


1979 ◽  
Vol 105 (2) ◽  
pp. 189-198
Author(s):  
Hraj A. Khararjian ◽  
Joseph H. Sherrard

Sign in / Sign up

Export Citation Format

Share Document