Structural Response to Uncertain Seismic Excitations

1986 ◽  
Vol 112 (6) ◽  
pp. 1355-1365 ◽  
Author(s):  
Mircea Grigoriu
Author(s):  
S. J. Dyke ◽  
B. F. Spencer ◽  
M. K. Sain ◽  
J. D. Carlson

Abstract In this paper, the efficacy of magnetorheological (MR) dampers for seismic protection of structures is investigated through a series of experiments in which an MR damper is used to control a three story test structure subjected to a one-dimensional earthquake motion. Because of the intrinsic nonlinearity of the MR damper, several earthquake amplitudes are considered to investigate the performance, in terms of both peak and rms responses, of this control systems over a range of loading conditions. The results indicate that the MR damper is quite effective for structural response reduction over a wide class of seismic excitations.


2015 ◽  
Vol 665 ◽  
pp. 121-124 ◽  
Author(s):  
Robert Jankowski

Structural interactions between adjacent, insufficiently separated buildings have been repeatedly observed during damaging ground motions. This phenomenon, known as the structural pounding, may result in substantial damage or even total collapse of structures. The aim of the present paper is to show the results of the nonlinear numerical analysis focused on pounding between inelastic three-storey buildings under seismic excitations. The discrete lumped-mass numerical models of two building have been used in the analysis. The results of the study indicate that the response of the lighter and more flexible inelastic building can be substantially influenced by structural interactions, and collisions may even lead to the permanent deformation of the structure. On the other hand, the behaviour of the heavier and stiffer building does not really change considerably during the earthquake. The results of the study also indicate that incorporation of the inelastic behaviour of colliding buildings with different dynamic characteristics is very important for the purposes of accurate numerical modelling of pounding-involved structural response under damaging seismic excitations.


2015 ◽  
Vol 141 (11) ◽  
pp. 04015041 ◽  
Author(s):  
Farzin Zareian ◽  
Peyman Kaviani ◽  
Ertugrul Taciroglu

2020 ◽  
pp. 147592172092308
Author(s):  
Ying Lei ◽  
Yixiao Zhang ◽  
Jianan Mi ◽  
Weifeng Liu ◽  
Lijun Liu

Many research groups in the structural health monitoring community have made efforts to utilize deep learning-based approaches for damage detection on a variety of structures. Among these approaches, structural damage detection through deep convolutional neural networks using raw structural response data has received great attention. However, structural responses are affected not only by structural properties but also by excitation characteristics. For detecting of structures’ damage under seismic excitations, different seismic excitations definitely cause varied structural responses data. In practice, it is impossible to accurately predict the characteristics of future seismic excitation for pre-training the deep convolutional neural network. Therefore, it is essential to investigate the autonomous detection of structural element damage subject to unknown seismic excitation. In this article, a new approach is proposed for detecting structural damage subject to unknown seismic excitation based on a convolutional neural network with wavelet-based transmissibility of structural response data. The transmissibility functions of structural response data are used to eliminate the influence of different seismic excitations. Moreover, contrary to the traditional Fourier transform in the conventional transmissibility function, wavelet-based transmissibility function is presented using the ability in subtle information acquisition of wavelet transform. The wavelet-based transmissibility data of structural responses are used as the inputs to constructed deep convolutional neural networks. Both a numerical simulation example and an experimental test are used to validate the performance of the proposed approach based on deep convolutional neural network.


Sign in / Sign up

Export Citation Format

Share Document