Multiphase Performance Assessment of Structural Response to Seismic Excitations

2015 ◽  
Vol 141 (11) ◽  
pp. 04015041 ◽  
Author(s):  
Farzin Zareian ◽  
Peyman Kaviani ◽  
Ertugrul Taciroglu
Author(s):  
S. J. Dyke ◽  
B. F. Spencer ◽  
M. K. Sain ◽  
J. D. Carlson

Abstract In this paper, the efficacy of magnetorheological (MR) dampers for seismic protection of structures is investigated through a series of experiments in which an MR damper is used to control a three story test structure subjected to a one-dimensional earthquake motion. Because of the intrinsic nonlinearity of the MR damper, several earthquake amplitudes are considered to investigate the performance, in terms of both peak and rms responses, of this control systems over a range of loading conditions. The results indicate that the MR damper is quite effective for structural response reduction over a wide class of seismic excitations.


2015 ◽  
Vol 665 ◽  
pp. 121-124 ◽  
Author(s):  
Robert Jankowski

Structural interactions between adjacent, insufficiently separated buildings have been repeatedly observed during damaging ground motions. This phenomenon, known as the structural pounding, may result in substantial damage or even total collapse of structures. The aim of the present paper is to show the results of the nonlinear numerical analysis focused on pounding between inelastic three-storey buildings under seismic excitations. The discrete lumped-mass numerical models of two building have been used in the analysis. The results of the study indicate that the response of the lighter and more flexible inelastic building can be substantially influenced by structural interactions, and collisions may even lead to the permanent deformation of the structure. On the other hand, the behaviour of the heavier and stiffer building does not really change considerably during the earthquake. The results of the study also indicate that incorporation of the inelastic behaviour of colliding buildings with different dynamic characteristics is very important for the purposes of accurate numerical modelling of pounding-involved structural response under damaging seismic excitations.


Sign in / Sign up

Export Citation Format

Share Document