Effects of Extreme Scour and Soil Subgrade Modulus on Bridge Pile Bent Buckling

Author(s):  
Doug Hughes ◽  
George E. Ramey ◽  
Mary L. Hughes
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Guoshuai Zang ◽  
Haizhu Lu ◽  
Guanglai Jin ◽  
Zhixiang Zhang

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.


Author(s):  
Paola Dalla Valle ◽  
Nick Thom

Abstract This paper presents the results of a review on variability of key pavement design input variables (asphalt modulus and thickness, subgrade modulus) and assesses effects on pavement performance (fatigue and deformation life). Variability is described by statistical terms such as mean and standard deviation and by its probability density distribution. The subject of reliability in pavement design has pushed many highway organisations around the world to review their design methodologies, mainly empirical, to move towards mechanistic-empirical analysis and design which provide the tools for the designer to evaluate the effect of variations in materials on pavement performance. This research has reinforced this need for understanding how the variability of design parameters affects the pavement performance. This study has only considered flexible pavements. The sites considered for the analysis, all in the UK (including Northern Ireland), were mainly motorways or major trunk roads. Pavement survey data analysed were for Lane 1, the most heavily trafficked lane. Sections 1km long were considered wherever possible. Statistical characterisation of the variation of layer thickness, asphalt stiffness and subgrade stiffness is addressed. A sensitivity analysis is then carried out to assess which parameter(s) have the greater influence on the pavement life. The research shows that, combining the effect of all the parameters considered, the maximum range of 15th and 85th percentiles (as percentages of the mean) was found to be 64% to 558% for the fatigue life and 94% to 808% for the deformation life.


2020 ◽  
Vol 7 ◽  
Author(s):  
Marco Rossi ◽  
Daniele Veber ◽  
Massimiliano Gei

A relevant application of transformation elastodynamics has shown that flexural waves in a Kirchhoff-Love plate can be diverted and channeled to cloak a region of the ambient space. To achieve the goal, an orthotropic meta-structural plate should be employed. However, the corresponding mathematical transformation leads to the presence of an unwanted strong compressive prestress, likely beyond the buckling threshold of the structure, with a set of in-plane body forces to warrant equilibrium. In addition, the plate must possess, at the same time, high bending stiffnesses, but a null twisting rigidity. With the aim of estimating the performance of cloaks modelled with approximate parameters, an in-house finite element code, based on a subparametric technique, is implemented to deal with the cloaking of transient waves in orthotropic thin plates. The tool allows us to explore the sensitivity of specific stiffness parameters that may be difficult to match in a real cloak design. In addition, the finite element code is extended to investigate a meta-plate interacting with a Winkler foundation, to confirm how the subgrade modulus should transform in the cloak region.


2021 ◽  
Vol 30 (1) ◽  
pp. 66-86
Author(s):  
Dian M. Setiawan

Abstract This study investigated the structural response of granular and asphaltic overlayment of rail track considering the linear viscoelastic behavior of asphalt. The calculation of the tensile strains at the bottom of the asphalt layer, the compressive stresses at the top of the subgrade layer, and the service life of the granular and the asphaltic overlayment rail track were conducted using the KENTRACK software. Furthermore, the sensitivity analysis by changing different factors was studied in this paper. The results of this study indicate that the asphaltic overlayment rail track structure has a much longer predicted service life than the granular rail track. It was also shown that the sub-grade compressive stress is more sensitive to the change in subgrade modulus than the change in ballast-sub-ballast-asphalt layer thickness and the change in binder type, respectively. In addition, the asphalt tensile strain is more sensitive to the change in asphalt layer thickness than the change in subgrade modulus and the change in binder type, respectively. These findings also enhance our understanding that subgrade compressive stress and asphalt tensile strain in the asphaltic overlayment track are more sensitive to the change in asphalt layer thickness than the change in binder type.


Sign in / Sign up

Export Citation Format

Share Document