Residual Shear Strength for Interfaces between Pipelines and Clays at Low Effective Normal Stresses

Author(s):  
S. S. Najjar ◽  
R. B. Gilbert ◽  
E. Liedtke ◽  
B. McCarron ◽  
A. G. Young
2015 ◽  
Vol 52 (2) ◽  
pp. 198-210 ◽  
Author(s):  
Hisham T. Eid ◽  
Ruslan S. Amarasinghe ◽  
Khaled H. Rabie ◽  
Dharma Wijewickreme

A laboratory research program was undertaken to study the large-strain shear strength characteristics of fine-grained soils under low effective normal stresses (∼3–7 kPa). Soils that cover a wide range of plasticity and composition were utilized in the program. The interface shear strength of these soils against a number of solid surfaces having different roughness was also investigated at similar low effective normal stress levels. The findings contribute to advancing the knowledge of the parameters needed for the design of pipelines placed on sea beds and the stability analysis of shallow soil slopes. A Bromhead-type torsional ring-shear apparatus was modified to suit measuring soil–soil and soil–solid interface residual shear strengths at the low effective normal stresses. In consideration of increasing the accuracy of assessment and depicting the full-scale field behavior, the interface residual shear strengths were also measured using a macroscale interface direct shear device with a plan interface shear area of ∼3.0 m2. Correlations are developed to estimate the soil–soil and soil–solid interface residual shear strengths at low effective normal stresses. The correlations are compared with soil–soil and soil–solid interface drained residual shear strengths and correlations presented in the literature.


2010 ◽  
Vol 47 (10) ◽  
pp. 1112-1126 ◽  
Author(s):  
Md. Akhtar Hossain ◽  
Jian-Hua Yin

Shear strength and dilative characteristics of a re-compacted completely decomposed granite (CDG) soil are studied by performing a series of single-stage consolidated drained direct shear tests under different matric suctions and net normal stresses. The axis-translation technique is applied to control the pore-water and pore-air pressures. A soil-water retention curve (SWRC) is obtained for the CDG soil from the equilibrium water content corresponding to each applied matric suction value for zero net normal stress using a modified direct shear apparatus. Shear strength increases with matric suction and net normal stress, and the failure envelope is observed to be linear. The apparent angle of internal friction and cohesion intercept increase with matric suction. A greater dilation angle is found at higher suctions with lower net normal stresses, while lower or zero dilation angles are observed under higher net normal stresses with lower suctions, also at a saturated condition. Experimental shear strength data are compared with the analytical shear strength results obtained from a previously modified model considering the SWRC, effective shear strength parameters, and analytical dilation angles. The experimental shear strength data are slightly higher than the analytical results under higher net normal stresses in a higher suction range.


2021 ◽  
Vol 44 (6) ◽  
pp. 20200234
Author(s):  
Timothy D. Stark ◽  
Abedalqader Idries

2017 ◽  
Vol 52 (12) ◽  
pp. 1589-1604 ◽  
Author(s):  
Aniruddh Vashisth ◽  
Charles E Bakis ◽  
Charles R Ruggeri ◽  
Todd C Henry ◽  
Gary D Roberts

Laminated fiber reinforced polymer composites are known for high specific strength and stiffness in the plane of lamination, yet relatively low out-of-plane impact damage tolerance due to matrix dominated interlaminar mechanical properties. A number of factors including the toughness of the matrix can influence the response of composites to impact. The objective of the current investigation is to evaluate the ballistic impact response of carbon/epoxy tubes with variable amounts of nanosilica particles added to the matrix as a toughening agent. Mass density, elastic modulus, glass transition temperature and Mode I fracture toughness of the matrix materials were measured. Tubes manufactured with these matrix materials were ballistically impacted using a round steel projectile aimed at normal incidence across the major diameter. After impact, the tubes were nondestructively inspected and subjected to mechanical tests to determine the residual shear strength in torsion. Increasing concentrations of nanosilica monotonically increased the modulus and fracture toughness of the matrix materials. Tubes with nanosilica had smaller impact damage area, higher residual shear strength, and higher energy absorbed per unit damage area versus control materials with no nanosilica. Overall, the addition of nanosilica improved the impact damage resistance and tolerance of carbon/epoxy tubes loaded in torsion, with minimal adverse effects on mass density and glass transition temperature.


Sign in / Sign up

Export Citation Format

Share Document