Reference-Free Damage Identification in Plate-Like Structures Using Lamb-Wave Propagation with Embedded Piezoelectric Sensors

2016 ◽  
Vol 29 (6) ◽  
pp. 04016062 ◽  
Author(s):  
Behrouz Alem ◽  
Ali Abedian ◽  
Komeil Nasrollahi-Nasab
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Songlai Wang ◽  
Wanrong Wu ◽  
Yiping Shen ◽  
Hui Li ◽  
Binlong Tang

Directional piezoelectric sensors can detect the Lamb wave propagation direction to locate damage in structural health monitoring (SHM). The directivity of the round piezoelectric fiber is exploited with a 0°/45°/90° rosette configuration to acquire flexural Lamb wave signals. The directional response of the piezoelectric fiber under narrowband tone-burst excitation is theoretically deduced. Experimental tests are conducted to demonstrate the directivity and the frequency response property of the piezoelectric fiber under different excitation central frequencies in comparison with the MFC, rectangular piezoelectric sheet, and circular piezoelectric disc. Continuous wavelet transform (CWT) is applied to extract the maximum response amplitude information of the acquired Lamb wave signal at a central frequency. Experimental test results indicate that the piezoelectric fiber is capable to be used as a Lamb wave directional sensor than other piezoelectric sensors. A numerical estimation method for the Lamb wave propagation direction is proposed by defining an error function between the theoretical and experimental normalized response amplitude. The proposed method is generally applicable for different rosette configurations. Experimental results validate the accuracy of the proposed estimation method. The research results are significant to design or select the piezoelectric sensor to measure Lamb wave signals.


2005 ◽  
Vol 293-294 ◽  
pp. 517-524 ◽  
Author(s):  
Joanna Grabowska ◽  
Marek Krawczuk

The article presents a method of damage identification in composite rods and beams based on the analysis of changes in Lamb wave propagation. For modelling of the problem the spectral element method is used. Spectral elements of rod and beam suitable for modelling the composites are employed. In the presented paper the following discontinuities are analysed: the fatigue open and not propagating crack, changes in the cross-section area, material discontinuities, various fibres volume and angle. The influence of discontinuities on the Lamb wave propagation processes is analysed.


Sign in / Sign up

Export Citation Format

Share Document