Robust Flight Control Design Using Sensor-Based Backstepping Control for Unmanned Aerial Vehicles

2017 ◽  
Vol 30 (6) ◽  
pp. 04017068 ◽  
Author(s):  
Lijia Cao ◽  
Xiaoxiang Hu ◽  
Shengxiu Zhang ◽  
Yunfeng Liu
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


2019 ◽  
Vol 9 (15) ◽  
pp. 3196 ◽  
Author(s):  
Lidia María Belmonte ◽  
Rafael Morales ◽  
Antonio Fernández-Caballero

Personal assistant robots provide novel technological solutions in order to monitor people’s activities, helping them in their daily lives. In this sense, unmanned aerial vehicles (UAVs) can also bring forward a present and future model of assistant robots. To develop aerial assistants, it is necessary to address the issue of autonomous navigation based on visual cues. Indeed, navigating autonomously is still a challenge in which computer vision technologies tend to play an outstanding role. Thus, the design of vision systems and algorithms for autonomous UAV navigation and flight control has become a prominent research field in the last few years. In this paper, a systematic mapping study is carried out in order to obtain a general view of this subject. The study provides an extensive analysis of papers that address computer vision as regards the following autonomous UAV vision-based tasks: (1) navigation, (2) control, (3) tracking or guidance, and (4) sense-and-avoid. The works considered in the mapping study—a total of 144 papers from an initial set of 2081—have been classified under the four categories above. Moreover, type of UAV, features of the vision systems employed and validation procedures are also analyzed. The results obtained make it possible to draw conclusions about the research focuses, which UAV platforms are mostly used in each category, which vision systems are most frequently employed, and which types of tests are usually performed to validate the proposed solutions. The results of this systematic mapping study demonstrate the scientific community’s growing interest in the development of vision-based solutions for autonomous UAVs. Moreover, they will make it possible to study the feasibility and characteristics of future UAVs taking the role of personal assistants.


2017 ◽  
Vol 9 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Ricardo P Parada ◽  
A Tadeo Espinoza ◽  
Alejandro E Dzul ◽  
Francisco G Salas

In this paper, we present the design and implementation of two nonlinear observers: nonlinear extended state observer and sliding mode observer for estimating the pitch, yaw and roll angles and angular rates of a fixed-wing unmanned aerial vehicles system under a decoupled-reduced model in real flight experiments. A backstepping control law is designed for control in a decentralized way for altitude, yaw and roll of the airplane. This scheme allows us to test experimentally the feasibility of using the online estimated data from the observers in flight control, which is useful for increasing the robustness of the control and the safety of flight. Furthermore, a comparative analysis of the performance of both nonlinear observers is conducted.


2019 ◽  
Vol 37 (4) ◽  
pp. 1049-1069 ◽  
Author(s):  
Thanh T Tran

Abstract This paper investigates an equivalence between feedback linearization and backstepping control. Implications from equivalence are that stability and performance properties of one method are the same for another method. Thus, a property known to exist only for one method could be used to prove property also holds for another. Also, a suspected advantage of one method over the other could be proven to be a false conjecture. Control laws in both approaches are achieved by coordinate transformations and non-linear feedbacks. Further, resulting non-linear feedback control law achieved by feedback linearization method matches exactly with non-linear controller achieved by the backstepping control design. This equivalence is a general analytical match within the specific class of non-linear dynamic systems under investigation. Demonstrations are considered and validated via flight control of longitudinal dynamics of a high performance aircraft simulation model. Algorithms are tested and evaluated with analytical models and non-linear closed-loop simulation.


Automatica ◽  
2011 ◽  
Vol 47 (12) ◽  
pp. 2743-2748 ◽  
Author(s):  
Alexander L. Fradkov ◽  
Boris Andrievsky

Sign in / Sign up

Export Citation Format

Share Document