Fault-Tolerant Decoupling Control for Spacecraft with SGCMGs Based on an Active-Disturbance Rejection-Control Technique

2018 ◽  
Vol 31 (2) ◽  
pp. 04018001 ◽  
Author(s):  
Fuzhen Zhang ◽  
Lei Jin ◽  
Shijie Xu ◽  
Yushan Zhao
2020 ◽  
Vol 42 (12) ◽  
pp. 2221-2233 ◽  
Author(s):  
Yun Cheng ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun

Although the heat integrated distillation is an energy-efficient and environment-friendly separation technology, it has not been commercialized. One of the reasons is that the nonlinear dynamics and the interactions between various control loops have limited the performance of the traditional control strategy. To achieve a high-purity product concentration, a dynamic decoupling control strategy based on active disturbance rejection control (ADRC) is proposed. The effects of interactions, uncertainties and external disturbances can be estimated and rejected by using extended state observer. Considering the constraints on manipulated variables, an optimized ADRC is designed for the first-order system. Moreover, a concentration observer based on a nonlinear wave model is formulated to reduce the number of sensors. In the simulation research, the related internal model control (IMC), multi-loop ADRC and model predictive control (MPC) are compared with the proposed control scheme. The simulation results demonstrate the advantages of the proposed control scheme on tight control, decoupling performance and disturbance rejection for the high-purity heat integrated distillation column.


2012 ◽  
Vol 182-183 ◽  
pp. 1474-1478
Author(s):  
Fei Meng ◽  
Jien Yang ◽  
Peng Song Yang ◽  
Biao Sun

Function fhan() and tracking differentiator are important components of Active Disturbance Rejection Control Technique. It is pointed out that function fhan() is not the optimal control synthesis function of discrete system, but function fsun() is. Amplitude and phase frequency characteristic curves of tracking differentiators constructed respectively by function fhan() and fsun() are given by computer simulations. The account formula about turning frequency is also given. Influence of parameter variation on tracking differentiator frequency characteristic is analyszed. The conclusion of this paper is supplement and perfection for the theory of tracking differentiator in Active Disturbance Rejection Control Technique, and it can promote rapid development of Active Disturbance Rejection Control Technique.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chao Ming ◽  
Xiaoming Wang

This paper investigates the design problem of the attitude controller for air-breathing supersonic vehicle subject to uncertainties and disturbances. Firstly, the longitudinal model is established for the attitude controller design which is devised as a strict feedback formulation, and a transformed tracking error is derived with the prescribed performance control technique such that it can limit the tracking error to a predefined region. Then, a novel linear active disturbance rejection control scheme is proposed for the attitude system to enhance the steady-state and transient-state performances by incorporating the transformed tracking error. On the basis of the Lyapunov stability theorem, the convergence and stability characteristics are both rigorously proved for the closed-loop system. Finally, extensive contrast simulations are conducted to demonstrate the effectiveness, robustness, and advantage of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document