Decoupling control of high-purity heat integrated distillation column process via active disturbance rejection control and nonlinear wave theory

2020 ◽  
Vol 42 (12) ◽  
pp. 2221-2233 ◽  
Author(s):  
Yun Cheng ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun

Although the heat integrated distillation is an energy-efficient and environment-friendly separation technology, it has not been commercialized. One of the reasons is that the nonlinear dynamics and the interactions between various control loops have limited the performance of the traditional control strategy. To achieve a high-purity product concentration, a dynamic decoupling control strategy based on active disturbance rejection control (ADRC) is proposed. The effects of interactions, uncertainties and external disturbances can be estimated and rejected by using extended state observer. Considering the constraints on manipulated variables, an optimized ADRC is designed for the first-order system. Moreover, a concentration observer based on a nonlinear wave model is formulated to reduce the number of sensors. In the simulation research, the related internal model control (IMC), multi-loop ADRC and model predictive control (MPC) are compared with the proposed control scheme. The simulation results demonstrate the advantages of the proposed control scheme on tight control, decoupling performance and disturbance rejection for the high-purity heat integrated distillation column.

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 760
Author(s):  
Fang Liu ◽  
Haotian Li ◽  
Ling Liu ◽  
Runmin Zou ◽  
Kangzhi Liu

In this paper, the speed tracking problem of the interior permanent magnet synchronous motor (IPMSM) of an electric vehicle is studied. A cascade speed control strategy based on active disturbance rejection control (ADRC) and a current control strategy based on improved duty cycle finite control set model predictive control (FCSMPC) are proposed, both of which can reduce torque ripple and current ripple as well as the computational burden. First of all, in the linearization process, some nonlinear terms are added into the control signal for voltage compensation, which can reduce the order of the prediction model. Then, the dq-axis currents are selected by maximum torque per ampere (MTPA). Six virtual vectors are employed to FCSMPC, and a novel way to calculate the duty cycle is adopted. Finally, the simulation results show the validity and superiority of the proposed method.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


2020 ◽  
Vol 42 (12) ◽  
pp. 2198-2205
Author(s):  
Yong Zhang ◽  
Zengqiang Chen ◽  
Mingwei Sun

This paper proposes a dynamic surface active disturbance rejection control (ADRC) strategy to deal with trajectory tracking problems for a quadrotor unmanned aerial vehicle (UAV). Compared with backstepping control, the design process of the dynamic controller is more simple; the dynamic surface control introduces a first-order filter to obtain the derivative of the virtual control, the purpose is to avoid the virtual control derivation, and to simplify the control law of the whole system. The ADRC technique is mainly used to reject the disturbances and stabilize the quadrotor UAV system. Parametric uncertainties and external disturbances have been considered for the whole system, the control strategy that proposed in this paper has been simulated by MATLAB and the advantages and effectiveness of the control strategy that proposed in the paper are shown by comparing with the classical ADRC.


2013 ◽  
Vol 404 ◽  
pp. 603-608
Author(s):  
Qing Bo Wu ◽  
Fu Yang Chen ◽  
Chang Yun Wen

In this paper, a self-repairing control scheme for attitude control of a quadrotor helicopter via active disturbance rejection control is proposed. Firstly, a model of the quadrotor helicopter is gained by its dynamic equations with pitch, roll and yaw axis. Then the active disturbance rejection controller is introduced, which is used to design the control system. The control system consists of PID controller in inner-loop and ADRC controller in outer-loop. Disturbances and uncertainties can be compensated by the ADRC to achieve smaller tracking error. Finally, the simulation results of the four-rotor helicopter validate the efficiency and self-repairing capability of the proposed control algorithm, compared with that of the PID control and the separate ADRC control.


Sign in / Sign up

Export Citation Format

Share Document